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Probability 
 

Beyond presenting some basic measures such as averages and standard deviations, we want to 
try to understand how much these measures can tell us about the larger world.  How likely is it, 
that we're being fooled, into thinking that there's a relationship when actually none exists?  To 
think through these questions we must consider the logical implications of randomness and 
often use some basic statistical distributions (discrete or continuous). 
 
Think Like a Statistician 
The basic question that a Statistician must ask is "How likely is it, that I'm being fooled?"  Once 
we accept that the world is random (rather than a manifestation of some god's will), we must 
decide how to make our decisions, knowing that we cannot guarantee that we will always be 
right.  There is some risk that the world will seem to be one way, when actually it is not.  The 
stars are strewn randomly across the sky but some bright ones seem to line up into patterns.  
So too any data might sometimes line up into patterns. 
 
Statisticians tend to stand on their heads and ask, suppose there were actually no relationship?  
(Sometimes they ask, "suppose the conventional wisdom were true?")  This statement, about 
"no relationship," is called the Null Hypothesis, sometimes abbreviated as H0.   The Null 
Hypothesis is tested against an Alternative Hypothesis, HA. 
 
Before we even begin looking at the data we can set down some rules for this test.  We know 
that there is some probability that nature will fool me, that it will seem as though there is a 
relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?"  What if there were actually no 
relationship, is there some chance that I could see what I actually see? 
  



Randomness in Sports 
As an example, consider sports events.  As any sports fan knows, a team or individual can get 
lucky or unlucky.  The baseball World Series, for example, has seven games.  It is designed to 
ensure that, by the end, one team or the other wins.  But will the better team always win? 
 
First make a note about subjectivity: if I am a fan of the team that won, then I will be convinced 
that the better team won; if I'm a fan of the losing team then I'll be certain that the better team 
got unlucky.  But fans of each team might agree, if they discussed the question before the 
Series were played, that luck has a role. 
 
Will the better team win?  Clearly a seven-game Series means that one team or the other will 
win, even if they are exactly matched (if each had precisely a 50% chance of winning).  If two 
representatives tossed a coin in the air seven times, then one or the other would win at least 
four tosses – maybe even more.  We can use a computer to simulate seven coin-tosses by 
having it pick a random number between zero and one and defining a "win" as when the 
random number is greater than 0.5. 
 
Or instead of having a computer do it, we could use a bit of statistical theory. 
 
Some math 
Suppose we start with just one coin-toss or game (baseball uses 7 games to decide a champion; 
football uses just one).  Choose to focus on one team so that we can talk about "win" and 
"loss".  If this team has a probability of winning that is equal to p, then it has a probability of 
losing equal to (1-p).  So even if p, the probability of winning, is equal to 0.6, there is still a 40% 
chance that it could lose a single game.  In fact unless the probability of winning is 100%, there 
is some chance, however remote, that the lesser team will win. 
 
What about if they played two games?  What are the outcomes?  The probability of a team 
winning both games is p*p = p2.  If the probability were 0.5 then the probability of winning 
twice in a row would be 0.25. 
 
A table can show this: 
 Win Game 1 {p} Lose Game 1 {1-p} 

Win Game 2 {p} outcome: W,W L,W 
Lose Game 2 {1-p} W,L L,L 

 
This is a fundamental fact about how probabilities are represented mathematically: if the 
probabilities are not related (i.e. if the tossed coin has no memory) then the probability of both 
events happening is found my multiplying the probabilities of each individual outcome.  (What 
if they're not unrelated, you may ask?  What if the first team that wins gets a psychological 
boost in the next so they're more likely to win the second game?  Then the math gets more 
complicated – we'll come back to that question!) 
 
The math notation for two events, call them A and B, both happening is: 



   Pr PrA and B A B   

 
The fundamental fact of independence is then represented as: 

     Pr Pr PrA B A B if A and B are independent   

where we use the term "independent" for when there is no relationship between them. 
 
The probability that a team could lose both games is (1-p)*(1-p) = (1-p)2.  The probability that 
the teams could split the series (each wins just one) is p*(1-p) + (1-p)*p = 2p(1-p).  There are 
two ways that each team could win just one game: either the series splits (Win,Loss) or 
(Loss,Win). 
 
For three games the outcomes become more complicated: now there are 8 combinations of 
win and loss:  

(W,W,W) (W,W,L) (W,L,W) (L,W,W) (W,L,L) (L,W,L) (L,L,W) (L,L,L) 
p*p*p p*p*(1-p) p*(1-p)p (1-p)p*p p(1-p)(1-p) (1-p)p(1-p) (1-p)(1-p)p (1-p)(1-p)(1-p) 

and the probabilities are in the row below.   
 
The team will win the series in any of the left-most 4 outcomes so its overall probability of 
winning the series is  

 3 23 1p p p   

while its probability of losing the series is 

   
2 3

3 1 1p p p   . 

 
Clearly if p is 0.5 so that p=(1-p) then the chances of either team winning the three-game series 
are equal.  If the probabilities are not equal then the chances are different, but as long as there 
is a probability not equal to one or zero (i.e. no certainty) then there is a chance that the worse 
team could win. 
 
If you keep on working out the probabilities for longer and longer series you might notice that 
the coefficients and functional forms are right out of Pascal's Triangle.  This is your first notice 
of just how "normal" the Normal Distribution is, in the sense that it jumps into all sorts of 
places where you might not expect it.  The terms of Pascal's Triangle begin (as N becomes 
large) to have a normal distribution!  We'll come back to this again... 
 
Terms and Definitions 
Some basics: a sample space is the entire list of possible outcomes (can be whole long list or 
even mathematical sets such as real numbers); events are subsets of the sample space.  Simple 
event is a single outcome (one dice comes up 6); a compound event is several outcomes (both 
dice come up 6).  Notate an event as A.  The complement of the event is the set of all events 
that are not in A; this is A'. 
 



The events must be mutually exclusive and exhaustive, so a good deal of the hard work in 
probability is just figuring out how to list all of the events. 
 
Mutually exclusive means that the events must be clearly defined so that the data observed 
can be classified into just one event.  Exhaustive means that every possible data observed must 
fit into some event.  The "mutually exclusive" part means that probabilities can be added up, so 
that if the probability of rolling a "1" on a dice is 1/6 and the probability of rolling a 6 is 1/6, then 
the probability of rolling either a 1 or 6 is 2/6 = 1/3.  The "exhaustive" part of defining the events 
means that the sum of all the events must equal one. 
 
For example, suppose we roll two dice.  We might want to think of "die #1 comes up as 6" as 
one event [in English, the singular of "dice" is "die" – how morbid gambling can be!].  But the 
other die can have 6 different values without changing the value of the first die.  So a better list 
of events would be the integers from 2 to 12, the sum of the dice values – with the note that 
there are many ways of achieving some of the events (a 7 is a 6 &1 or a 5&2, or 4&3, or 3&4, or 
2&5, or 1&6) while other events have only one path (each die comes up 6 to make 12). 
 
A sample space is the set of all possible events.  The sum of the probability of all of the events 
in the sample space is equal to one.  There is a 100% chance that something happens (provided 
we've defined the sample space correctly).  So if a lottery brags that there is a 2% chance that 
"you might be a winner!" this is equivalent to stating that there is a 98% chance that you'll lose. 
 
Events have probability; this must lie between zero and one (inclusive); so 0 1P  .  The 
probability of all of the events in the sample space must sum to one.  This means that the 

probability of an event and its complement must sum to one:     1P A P A  . 

 
Probabilities come from empirical results (relative frequency approach) or the classical (a priori 
or postulated) assignment or from subjective beliefs that people have.   
 
In empirical approach, the Law of Large Numbers is important: as the number of identical 
trials increases, the estimated frequency approaches its theoretical value.  You can try flipping 
coins and seeing how many come up heads (flip a bunch at a time to speed up the process); it should be 
50%. 
 
We are often interested in finding the probability of two events both happening; this is the 
"intersection" of two events; the logical "and" relationship; two things both occurring.  In the 
PUMS data we might want to find how many females have a college degree; in poker we might 
care about the chance of an opponent having an ace as one of her hole cards and the dealer 

turning up a king.  We notate the intersection of A and B as A B  and want to find  P A B .  

In SPSS this is notated with "&". 
 
The "union" of two events is the logical "or" so it is either of two events occurring; this is A B  

so we might consider  P A B  or, in SPSS, "|".  In the PUMS data we might want to combine 



people who report themselves as having race "black" with those who report "black – white".   In 
cards,  it is the probability that any of my 3 opponents has a better hand. 
 
Married people can buy life insurance policies that pay out either when the first person dies or 
after both die – logical and vs or. 
 
Venn Diagrams (Ballantine) 
 
 
 
 
 
General Law of Addition 

       P A B P A P B P A B      

and so        P A B P A P B P A B      

 
Mutually Exclusive (Special Law of Addition),  

If A B    then   0P A B   and      P A B P A P B    

 
Conditional Probability 

 
 

 

P A B
P A B

P B


  if   0P B  .  See Venn Diagram. 

 
Independent Events 

A is independent of B if and only if    P A B P A  

 
If we have multiple random variables then we can consider their Joint Distribution: the 
probability associated with each outcome in both sample spaces.  So a coin flip has a simple 
discrete distribution: a 50% chance of heads and a 50% chance of tails.  Flipping 2 coins gives a 
joint distribution: a 25% chance of both coming up heads, a 25% chance of both coming up 
tails, and a 50% chance of getting one head and one tail. 
 
The probability of multiple independent events is found by multiplying the probabilities of 

each event together.  So the chance of rolling two 6 on two dice is 
1 1 1

6 6 36
  .  The probability 

of getting to the computer lab on the 6th floor of NAC from the first floor, without having to 
walk up a broken escalator, can be found this way too.  Suppose the probability of an escalator 

not working is p ; then the probability of it working is  1 p  and the probability of five 

escalators each working is  
5

1 p .  So even if the probability of a breakdown is small (5%), still 

the probability of having every escalator work is just 



     
5

5 5 5 95
1 5% 95% 0.95 0.7738 77.38%

100

 
      

 
 so this implies that you'd expect to 

walk more than once a week. 
 
A simple representation of the joint distribution of two coin flips is a table: 

 coin 1 Heads coin 1 Tails 

coin 2 Heads H,H at 25% H,T at 25% 
coin 2 Tails T,H at 25% T,T at 25% 

Where, since the outcomes are independent, we can just multiply the probabilities. 
 
The Joint Distribution tells the probabilities of all of the different outcomes.  A Marginal 
Distribution answers a slightly different question: given some value of one of the variables, 
what are the probabilities of the other variables? 
 
When the variables are independent then the marginal distribution does not change from the 
joint distribution.  Consider a simple example of X and Y discrete variables.  X takes on values 
of 1 or 2 with probabilities of 0.6 and 0.4 respectively.  Y takes on values of 1, 2, or 3 with 
probabilities of 0.5, 0.3, and 0.2 respectively.  So we can give a table like this: 
 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at probability 0.3 (2,1) at probability 0.2  
Y=2 (30%) (1,2) at probability 0.18 (2,2) at probability 0.12  
Y=3 (20%) (1,3) at probability 0.12 (2,3) at probability 0.08  

    
On the assumption that X and Y are independent.  The probabilities in each box are found by 
multiplying the probability of each independent event. 
 
If instead we had the two variables, A and B, not being independent then we might have a 
table more like this: 
 A=1  A=2   

B=1  (1,1) at probability 0.25 (2,1) at probability 0.13  
B=2  (1,2) at probability 0.23 (2,2) at probability 0.12  
B=3  (1,3) at probability 0.17 (2,3) at probability 0.1  

    
We will examine the differences. 
 
If we add up the probabilities along either rows or columns then we get the marginal 
probabilities (which we write in the margins, appropriately enough).  Then we'd get: 
 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at probability 0.3 (2,1) at probability 0.2 0.5 
Y=2 (30%) (1,2) at probability 0.18 (2,2) at probability 0.12 0.3 
Y=3 (20%) (1,3) at probability 0.12 (2,3) at probability 0.08 0.2 

 0.6 0.4  



Which just re-states our assumption that the variables are independent – and shows that, 
where there is independence, the probability of either variable alone does not depend on the 
value that the other variable takes on.  In other words, knowing X does not give me any 
information about the value that Y will take on, and vice versa. 
 
If instead we do this for the A,B case we get: 
 A=1  A=2   

B=1  (1,1) at probability 0.25 (2,1) at probability 0.13 0.38 
B=2  (1,2) at probability 0.23 (2,2) at probability 0.12 0.35 
B=3  (1,3) at probability 0.17 (2,3) at probability 0.1 0.27 

 0.65 0.35  
Where we double check that we've done it right by seeing that the sum of either of the 
marginals is equal to one (65% + 35% = 100% and 38% + 35% + 27% = 100%). 
 
So the marginal distributions sum the various ways that an outcome can happen.  For example, 
we can get A=1 in any of 3 ways: either (1,1), (1,2) or (1,3).  So we add the probabilities of each 
of these outcomes to find the total chance of getting A=1. 
 
But if we want to understand how A and B are related, it might be more useful to consider this 
as a prediction problem: would knowing the value that A takes on help me guess the value of 
B?  Would knowing the value that B takes on help me guess the value of A? 
 
These are abstract questions but they have vitally important real-life analogs.  In airport 
security, is the probability that someone is a terrorist independent of whether they are 
Muslim?  Is the probability that someone is pulled out of line for a thorough search 
independent of whether they are Muslim?  (The TSA might have different beliefs than you or me!)  In 
medicine, is the probability that someone gets cancer independent of whether they eat lots of 
vegetables?  In economics, is the probability that someone defaults on their mortgage 
independent of the mortgage originator (Fannie, Freddie, mortgage broker, bank)?  Is the 
probability of the country pulling out of recession independent of whether the Fed raises rates?  
In poker, if my opponent just raised the bid, what is the probability that her cards are better 
than mine? 
 
For these questions we want to find the conditional distribution: what is the probability of 
some outcome, given a particular value for some other random variable? 
 
Just from the phrasing of the question, you should be able to see that if the two variables are 
independent then the conditional distribution should not change from the marginal 
distribution – as is the case of X and Y.  Flipping a coin does not help me guess the outcome of 
a roll of the dice.  (Cheering in front of a sports game on TV does not affect the outcome, for 
another example – although plenty of people might dispute that!) 
 
How do we find the conditional distribution?  Take the value of the joint distribution and divide 
it by the marginal distribution of the relevant variable. 



 
For example, suppose we want to find the probability of B outcomes, conditional on A=1.  
Since we know that A=1, there is no longer a 65% probability of A -- it happened.  So we divide 
each joint probability by 0.65 so that the sum will be equal to 1.  So the probabilities are now: 
 A=1  A=2   

B=1  (1,1) at probability 
0.25/.65 

(2,1) at probability 0.13 0.38 

B=2  (1,2) at probability 
0.23/.65 

(2,2) at probability 0.12 0.35 

B=3  (1,3) at probability 
0.17/.65 

(2,3) at probability 0.1 0.27 

 0.65/.65 0.35  
so now we get the conditional distribution: 
 A=1  A=2   

B=1  (1,1) @ 0.3846 (2,1) at probability 0.13 0.38 
B=2  (1,2) @ 0.3538 (2,2) at probability 0.12 0.35 
B=3  (1,3) @ 0.2615 (2,3) at probability 0.1 0.27 

  0.35  
 
We could do the same to find the conditional distribution of B, given that A=2: 
 A=1  A=2   

B=1  (1,1) at probability 0.25 (2,1) @ 0.13/.35 =.3714 0.38 
B=2  (1,2) at probability 0.23 (2,2) @ 0.12/.35 = 

.3429 
0.35 

B=3  (1,3) at probability 0.17 (2,3) @ 0.1/.35 = .2857 0.27 
 0.65   

These conditional probabilities are denoted as  Pr 2B A   for example.  We could find the 

expected value of B given that A equals 2, 2E B A   , just by multiplying the value of B by its 

probability of occurrence, so      2 1 .3714 2 .3429 3 .2857E B A         . 

 
We could find the conditional probabilities of A given B=1 or given B=2 or given B=3.  In those 
cases we would sum across the rows rather than down the columns. 
 
More pertinently, we can get crosstabs (on SPSS, "Analyze" then "Descriptive Statistics" then 
"Crosstabs") on two variables, for example the native/foreign born in each borough, 

    foreign_born 

Total     0 1 

boroughs Bronx 33955 15928 49883 

Manhattan 40511 15632 56143 

Staten Is 16074 3971 20045 

Brooklyn 62464 37324 99788 

Queens 48193 41719 89912 



Total 201197 114574 315771 

 
To get the joint probabilities, we divide the counts by the grand total, 

 
native foreign 

Bronx 0.1075 0.0504 

Manhattan 0.1283 0.0495 

Staten Is 0.0509 0.0126 

Brooklyn 0.1978 0.1182 

Queens 0.1526 0.1321 

 
Then get the marginals: 

 
native foreign 

 Bronx 0.1075 0.0504 0.1580 

Manhattan 0.1283 0.0495 0.1778 

Staten Is 0.0509 0.0126 0.0635 

Brooklyn 0.1978 0.1182 0.3160 

Queens 0.1526 0.1321 0.2847 

 
0.6372 0.3628 

 These show that, in NYC, 64% are natives and 36% are foreign-born.  The most populous 
boroughs are Brooklyn and Queens, each with about 30% of the city's population, while 
Manhattan and the Bronx each have about 15% and tiny Staten Island has just over 6%. 
 
Then the conditional probabilities.  Conditional on being native born, 

 
native foreign 

 Bronx 0.1688 0.0504 0.1580 

Manhattan 0.2013 0.0495 0.1778 

Staten Is 0.0799 0.0126 0.0635 

Brooklyn 0.3105 0.1182 0.3160 

Queens 0.2395 0.1321 0.2847 

 
0.6372 0.3628 

 So 31% of the natives live in Brooklyn, 24% in Queens, 20% in Manhattan, 17% in the Bronx, 
and 8% in Staten Island.  So a larger fraction of natives (relative to overall population share) is 
in Manhattan and Staten Island while a much lower fraction of native-born are in Queens. 
 
Conditional on being foreign born, 

 
native foreign 

 Bronx 0.1075 0.1390 0.1580 

Manhattan 0.1283 0.1364 0.1778 

Staten Is 0.0509 0.0347 0.0635 

Brooklyn 0.1978 0.3258 0.3160 

Queens 0.1526 0.3641 0.2847 



 
0.6372 0.3628 

 So 36% of immigrants live in Queens (relative to 28% of the population overall), 33% in 
Brooklyn, 14% in the Bronx and Manhattan, and just 3% in Staten Island. 
 
The relative fractions of native/immigrant by borough (so conditional probabilities) is 

 
native foreign 

 Bronx 0.6807 0.3193 0.1580 

Manhattan 0.7216 0.2784 0.1778 

Staten Is 0.8019 0.1981 0.0635 

Brooklyn 0.6260 0.3740 0.3160 

Queens 0.5360 0.4640 0.2847 

 
0.6372 0.3628 

 So the borough with the highest fraction of immigrants is Queens (a 54-46 split), followed by 
Brooklyn, the Bronx, Manhattan, and Staten Island (where natives outnumber immigrants by 
4-to-1). 
 
Conditional probabilities can also be calculated with what is called Bayes' Theorem:  

 
   

 

P A B P B
P B A

P A


 . 

This can be understood by recalling the definition of conditional probability, 

 
 

 

P A B
P A B

P B


 , so  

 

 

P A B
P B A

P A


 , that the conditional probability equals the joint 

probability divided by the marginal probability. 
 
The power of Bayes' Theorem can be understood by thinking about medical testing.  Suppose 
a genetic test screens for some disease with 99% accuracy.  Your test comes back positive – 
how worried should you be?   The surprising answer is not 99% worried; in fact often you might 
be more than likely to be healthy!  Suppose that the disease is rare so only 1 person in 1000 has 
it (so 0.1%).  So out of 1000 people, one person has the disease and the test is 99% likely to 
identify that person.  Out of the remaining 999 people, 1% will be misidentified as having the 
disease, so this is 9.99 – call it 10 people.  So eleven people will test positive but only one will 
actually have the disease so the probability of having the disease given that the test comes up 

positive,  P sick test  , is 
   

 

P test sick P sick

P test




= 

0.99 0.001
.099

0.01


 . 

 
The test is not at all useless – it has brought down an individual's likelihood of being sick by 
orders of magnitude, from one-tenth of one percent to ten percent.  But it's still not nearly as 
accurate as the "99%" label might imply. 
 
Many healthcare providers don't quite get this and explain it merely as "don't be too worried 
until we do further tests."  But this is one reason why broad-based tests can be very expensive 



and not very helpful.  These tests are much more useful if we first narrow down the population 
of people who might have the disease.  For example home pregnancy tests might be 99% 
accurate but if you randomly selected 1000 people to take the test, you'd find many false 
positives.  Some of those might be guys (!) or women who, for a variety of reasons, are not 
likely to be pregnant.  The test is only useful as one element of a screen that gets progressively 
finer and finer. 
 
Counting Rules 

If A can occur as N1 events and B can be N2 events then the sample space is 1 2N N  (visualize a 

contingency table with N1 rows and N2 columns). 
 
Factorials: If there are N items then they can be arranged in 

       
1

0

! 1 2 1
N

i

N n n n N i




      ways. 

 
Permutations: n events that can occur in r items (where order is important) have a total of 

 
!

!

n
nPr

n r



 possible outcomes. 

 
Combinations: n events that can occur in r items (where order is not important) have 

 
!

! !

n
nCr

r n r



 possible outcomes – just the permutation divided by r! to take care of the 

multiple ways of ordering. 
 
As a simple application, consider online passwords (see NYTimes article below).   
 
The article reports: 

Mr. Herley, working with Dinei Florêncio, also at Microsoft Research, looked at 
the password policies of 75 Web sites. ... They reported that the sites that 
allowed relatively weak passwords were busy commercial destinations, 
including PayPal, Amazon.com  and Fidelity Investments. The sites that insisted 
on very complex passwords were mostly government and university sites. What 
accounts for the difference? They suggest that “when the voices that advocate 
for usability are absent or weak, security measures become needlessly 
restrictive.”   

Consider the simple mathematics of why a government or university might want 
complex passwords.  How many permutations are possible if passwords are 6 numerical 
digits?  How many if passwords are 6 alphabetic or numeric characters?  If the 
characters are alphabetic, numeric, and fifteen punctuation characters (, . _ - ? ! @ # $ 
% ^ & * ' ")?  What if passwords are 8 characters?  If each login attempt takes 1/100 of a 
second, how many seconds of "brute-force attack" does it take to access the account on 
average?  If there is a penalty of 10 minutes after 3 unsuccessful login attempts, how 



long would it take to break in?  (Of course, the article notes, if password requirements 
are so arcane that employees put their passwords on a Post-It attached to the monitor, 
then the calculations above are irrelevant.) 
 
 
( for fun, here's another example of Joint/Marginal Distributions) 
 
Tiger Mother Amy Chua in WSJ, Jan 8, 2011 

A lot of people wonder how Chinese parents raise such stereotypically successful kids. They wonder what 
these parents do to produce so many math whizzes and music prodigies, what it's like inside the family, and 

whether they could do it too. Well, I can tell them, because I've done it. Here are some things my daughters, 
Sophia and Louisa, were never allowed to do: 

• attend a sleepover 
• have a playdate 
• be in a school play 
• complain about not being in a school play 
• watch TV or play computer games 
• choose their own extracurricular activities 
• get any grade less than an A 

• not be the No. 1 student in every subject except gym and drama 
• play any instrument other than the piano or violin 
• not play the piano or violin. 

I'm using the term "Chinese mother" loosely. I know some Korean, Indian, Jamaican, Irish and Ghanaian 
parents who qualify too. Conversely, I know some mothers of Chinese heritage, almost always born in the 
West, who are not Chinese mothers, by choice or otherwise. I'm also using the term "Western parents" 
loosely. Western parents come in all varieties. 

 
So go to PUMS and look at first-generation immigrants with parents from China... 
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A Strong Password Isn’t the Strongest Security 

By RANDALL STROSS; New York Times 

MAKE your password strong, with a unique jumble of letters, numbers and punctuation marks. But memorize it — 

never write it down. And, oh yes, change it every few months.  

These instructions are supposed to protect us. But they don’t.  

Some computer security experts are advancing the heretical thought that passwords might not need to be “strong,” or 

changed constantly. They say onerous requirements for passwords have given us a false sense of protection against 

potential attacks. In fact, they say, we aren’t paying enough attention to more potent threats.  

Here’s one threat to keep you awake at night: Keylogging software, which is deposited on a PC by a virus, records 

all keystrokes — including the strongest passwords you can concoct — and then sends it surreptitiously to a remote 

location.  

“Keeping a keylogger off your machine is about a trillion times more important than the strength of any one of your 

passwords,” says Cormac Herley, a principal researcher at Microsoft Research who specializes in security-related 

topics. He said antivirus software could detect and block many kinds of keyloggers, but “there’s no guarantee that it 

gets everything.”  

After investigating password requirements in a variety of settings, Mr. Herley is critical not of users but of system 

administrators who aren’t paying enough attention to the inconvenience of making people comply with arcane rules. 

“It is not users who need to be better educated on the risks of various attacks, but the security community,” he said 

at a meeting of security professionals, the New Security Paradigms Workshop, at Queen’s College in Oxford, 

England. “Security advice simply offers a bad cost-benefit tradeoff to users.”  

One might guess that heavily trafficked Web sites — especially those that provide access to users’ financial 

information — would have requirements for strong passwords. But it turns out that password policies of many such 

sites are among the most relaxed. These sites don’t publicly discuss security breaches, but Mr. Herley said it “isn’t 

plausible” that these sites would use such policies if their users weren’t adequately protected from attacks by those 

who do not know the password.  

Mr. Herley, working with Dinei Florêncio, also at Microsoft Research, looked at the password policies of 75 Web 

sites. At the Symposium on Usable Privacy and Security, held in July in Redmond, Wash., they reported that the 

sites that allowed relatively weak passwords were busy commercial destinations, including PayPal, Amazon.com 

and Fidelity Investments. The sites that insisted on very complex passwords were mostly government and university 

sites. What accounts for the difference? They suggest that “when the voices that advocate for usability are absent or 

weak, security measures become needlessly restrictive.”  

Donald A. Norman, a co-founder of the Nielsen Norman Group, a design consulting firm in Fremont, Calif., makes 

a similar case. In “When Security Gets in the Way,” an essay published last year, he noted the password rules of 

Northwestern University, where he then taught. It was a daunting list of 15 requirements. He said unreasonable rules 

can end up rendering a system less secure: users end up writing down passwords and storing them in places that can 

be readily discovered.  

“These requirements keep out the good guys without deterring the bad guys,” he said.  
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Northwestern has reduced its password requirements to eight, but they still constitute a challenging maze. For 

example, the password can’t have more than four sequential characters from the previous seven passwords, and a 

new password is required every 120 days.  

By contrast, Amazon has only one requirement: that the password be at least six characters. That’s it. And hold on to 

it as long as you like.  

A short password wouldn’t work well if an attacker could try every possible combination in quick succession. But as 

Mr. Herley and Mr. Florêncio note, commercial sites can block “brute-force attacks” by locking an account after a 

given number of failed log-in attempts. “If an account is locked for 24 hours after three unsuccessful attempts,” they 

write, “a six-digit PIN can withstand 100 years of sustained attack.”  

Roger A. Safian, a senior data security analyst at Northwestern, says that unlike Amazon, the university is 

unfortunately vulnerable to brute-force attacks in that it doesn’t lock out accounts after failed log-ins. The reason, he 

says, is that anyone could use a lockout policy to try logging in to a victim’s account, “knowing that you won’t 

succeed, but also knowing that the victim won’t be able to use the account, either.” (Such thoughts may occur to a 

student facing an unwelcome exam, who could block a professor from preparations.)  

VERY short passwords, taken directly from the dictionary, would be permitted in a password system that Mr. 

Herley and Stuart Schechter at Microsoft Research developed with Michael Mitzenmacher at Harvard.  

At the Usenix Workshop on Hot Topics in Security conference, held last month in Washington, the three suggested 

that Web sites with tens or hundreds of millions of users, could let users choose any password they liked — as long 

as only a tiny percentage selected the same one. That would render a list of most often used passwords useless: by 

limiting a single password to, say, 100 users among 10 million, the odds of an attacker getting lucky on one attempt 

per account are astronomically long, Mr. Herley explained in a conversation last month.  

Mr. Herley said the proposed system hadn’t been tested and that users might become frustrated in trying to select a 

password that was no longer available. But he said he believed an anything-is-permitted password system would be 

welcomed by users sick of being told, “Eat your broccoli; a strong password is good for security.”  

Randall Stross is an author based in Silicon Valley and a professor of business at San Jose State University. E-mail: 

stross@nytimes.com. 
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