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Continuous Random Variables 
 

 
The PDF and CDF 
Where discrete random variables would sum up probabilities for the individual outcomes, 
continuous random variables necessitate some more complicated math.  When X is a 
continuous random variable, the probability of it being equal to any particular value is zero  If X 
is continuous, there is a zero chance that it will be, say, 5 – it could be 4.99998 or 5.000001 and 
so on.  But we can still take the area under the PDF by taking the limit of the sum, as the 
horizontal increments get smaller and smaller – the Riemann method, for those who 
remember Calculus.  So to find the probability of X being equal to a set of values we integrate 
the PDF between those values, so  

   
b

a

P a X b p x dx    . 

 
The CDF, the probability of observing a value less than some parameter, is therefore the 

integral with   as the lower limit of integration, so    
b

P X b p x dx


   . 

 
For this class you aren't required to use calculus but it's helpful to see why somebody might 
want to use it.  (Note that many of the statistical distributions we'll talk about come up in solving partial differential 

equations such as are commonly used in finance – so if you're thinking of a career in that direction, you'll want even more math!) 
 
Normal Distribution 
We will most often use the Normal Distribution – but usually the first question from students is 
"Why is that crazy thing normal?!!"  You're not the only one to ask  
 
In statistics it is often convenient to use a normal distribution, the bell-shaped distribution that 
arises in many circumstances.  It is useful because the (properly scaled) mean of independent 
random draws of many other statistical distributions will tend toward a normal distribution – 
this is the Central Limit Theorem.   
 

Some basic facts and notation: a normal distribution with mean µ and standard deviation  is 

denoted N(µ,).  (The variance is the square of the standard deviation, 2.)  The Standard 

Normal distribution is when µ=0 and =1; its probability density function (pdf) is denoted 



pdfN(x); the cumulative density function (CDF) is cdfN(x) or sometimes Nor(x).  This is a graph 
of the PDF (the height at any point) and CDF of the normal: 
 

 
 
One of the basic properties of the normal distribution is that, if X is distributed normally with 

mean µ and standard deviation , then Y = A + bX is also distributed normally, with mean (A + 

bµ) and standard deviation b.  We will use this particularly when we "standardize" a sample: 

by subtracting its mean and dividing by its standard deviation, the result should be distributed 
with mean zero and standard deviation 1.   
 
Oppositely, if we are creating random variables with a standard deviation, we can take random 
numbers with a N(0,1) distribution, multiply by the desired standard deviation, and add the 
desired mean, to get normal random numbers with any mean or standard deviation.  In Excel, 
you can create normally distributed random numbers by using the RAND() function to 
generate uniform random numbers on [0,1], then NORMSINV(RAND()) will produce standard-
normal-distributed random draws. 



 
Motivation: Sample Averages are Normally Distributed 
Before we do a long section on how to find areas under the normal distribution, I want to 
address the big question: Why we the heck would anybody ever want to know those?!?! 
 
Consider a case where we have a population of people and we sample just a few to calculate an 
average.  Before elections we hear about these types of procedures all of the time: a poll that 
samples just 1000 people is used to give information about how a population of millions of 
people will vote.  These polls are usually given with a margin of error ("54% of people liked 
Candidate A over B, with a margin of error of plus or minus 2 percentage points").  If you don't 
know statistics then polls probably seem like magic.  If you do know statistics then polls are 
based on a few simple formulas. 
 
I have a dataset of about 206,639 people who reported their wage and salary to a particular 
government survey, the "Current Population Survey," the CPS.  The true average of their wage 
and salaries was $19,362.62.  (Not quite; the top income value is cut at $625,000 – people who made more are still 

just coded with that amount.  But don't worry about that for now.)  The standard deviation of the full 206,639 
people is 39,971.91. 
 
A histogram of the data shows that most people report zero (zero is the median value), which 
is reasonable since many of them are children or retired people.  However some report 
incomes up to $625,000! 

 
Taking an average of a population with such extreme values would seem to be difficult. 
 
Suppose that I didn't want to calculate an average for all 206,639 people – I'm lazy or I've got a 
real old and slow computer or whatever.  I want to randomly choose just 100 people and 
calculate the sample average.  Would that be "good enough"? 



 
Of course the first question is "good enough for what?" – what are we planning to do with the 
information?   
 
But we can still ask whether the answer will be very close to the true value.  In this case we 
know the true value; in most cases we won't.  But this allows us to take a look at how the 
sampling works. 
 
Here is a plot of values for 1000 different polls (each poll with just 100 people).   

 
We can see that, although there are a few polls with averages as low almost 10,000 and a few 
with averages as high as 30,000, most of the polls are close to the true mean of $19,363. 
 
In general the average of even a small sample is a good estimate of the true average value of 
the population.  While a sample might pick up some extreme values from one side, it is also 
likely to pick extreme values from the other side, which will tend to balance out. 
 
A histogram of the 1000 poll means is here: 



 
This shows that the distribution of the sample means looks like a Normal distribution – another 
case of how "normal" and ordinary the Normal distribution is. 
 
Of course the size of each sample, the number of people in each poll, is also important.  
Sampling more people gets us better estimates of the true mean. 
 
This graph shows the results from 100 polls, each with different sample sizes. 

 
In the first set of 100 polls, on the left, each poll has just 10 people in it, so the results are quite 
varied.  The next set has 20 people in each poll, so the results are closer to the true mean.  By 



the time we get to 100 people in each poll (102 on the log-scale x-axis), the variation in the polls 
is much smaller. 
 
Each distribution has a bell shape, but we have to figure out if there is a single invariant 
distribution or only a family of related bell-shaped curves. 
 
If we subtract the mean, then we can center the distribution around zero, with positive and 
negative values indicating distance from the center.  But that still leaves us with different 
scalings: as the graph above shows, the typical distance from the center gets smaller.  So we 
divide by its standard deviation and we get a "Standard Normal" distribution. 
 
The Standard Normal graph is: 

 
Note that it is symmetric around zero.  Like any histogram, the area beneath the curve is a 
measure of the probability.  The total area under the curve is exactly 1 (probabilities must add 
up to 100%).  We can use the known function to calculate that the area under the curve, from -
1 to 1, is 68.2689%.  This means that just over 68% of the time, I will draw a value from within 1 
standard deviation of the center.  The area of the curve from -2 to 2 is 95.44997%, so we'll be 
within 2 standard deviations over 95.45% of the time. 
 
It is important to be able to calculate areas under the Standard Normal.  For this reason people 
used to use big tables (statistics textbooks still have them); now we use computers.  But even 
the computers don't always quite give us the answer that we want, we have to be a bit savvy. 
 
So the normal CDF of, say, -1, is the area under the pdf of the points to the left of -1: 



 
This area is 15.87%.  How can I use this information to get the value that I earlier told you, that 
the area in between -1 and 1 is 68.2689%?  Well, we know two other things (more precisely, I 
know them and I wrote them just 3 paragraphs up, so you ought to know them).  We know that 
the total area under the pdf is 100%.  And we know that the pdf is symmetric around zero.  This 
symmetry means that the area under the other tail, the area from +1 all the way to the right, is 
also 15.87%. 

 
So to find the area in between -1 and +1, I take 100% and subtract off the two tail areas: 



 
And this middle area is 100 – 15.87 – 15.87 = 68.26. 
 
Sidebar: you can think of all of this as "adding up" without calculus.  On the other hand, 
calculus makes this procedure much easier and we can precisely define the cdf as the integral, 

from negative infinity to some point Z, under the pdf: 
   

Z

cdf Z pdf x dx


 
. 

 
So with just this simple knowledge, you can calculate all sorts of areas using just the 
information in the CDF. 
 
 
 
Hints on using Excel, SPSS, and Matlab to calculate the Standard Normal cdf 
 
Excel 
Excel has both normdist and normsdist For normdist you need to tell it the mean 

and standard deviation, so use the function normdist(X,mean,stdev,cumulative)

For normsdist it assumes the mean is zero and standard deviation is one so you just use
normsdist(X) Read the help files to learn more.  The final argument of the normdist

function, Cumulative is a true/false: if true then it calculates the cdf (area to the left of X); 

if false it calculates the pdf.  [Personally, that's an ugly and non-intuitive bit of coding, but then again, 
Microsoft has no sense of beauty.] 
 
To figure out the other way – what X value gives me some particular probability, we use 
norminv or normsinv.



All of these commands are under Insert then Function then, under Select a 

Category choose Statistical

SPSS 
For SPSS you can open it up with an empty dataset and go to the "Data View" tab.  Then use 

"Transform," "Compute Variable…" and, under "Function Group" find "CDF and 

Noncentral CDF".  Then "Cdf.Normal(X,mean,stdev)" calculates the normal cdf for 
the given X variable.  Select this function and use the up-arrow to push it into the "Numeric 

Expression" dialog box.  For any of the inputs (which SPSS denotes as "?") you can click on 
a variable from the list on the left.  Or just type in the values.  You need to give your output 
variable a name, this is the blank "Target Variable" on the upper left-hand side.  If you're 

just doing calculations then give it any name; later on, if you are doing more complex series of 
calculations, you can worry about understandable variable names.  Then hit "OK" and look back 

in the "Data View."  (It will spawn an Output view but that only tells you if there were errors 
in the function.) 
 
To go backwards, find "Inverse DF" under "Function Group" and then 

"IDF.Normal(p,mean,stdev)" where you input the probability. 

 
Matlab 
Matlab has the command, normcdf(X,mean,stdev).  The inputs mean and stdev are 
the mean and standard deviations of the normal distribution considered; for the Standard 
Normal you can just leave those blank and just write normcdf(X).  If X is a vector or matrix 

then it computes the standard normal cdf of each cell value.  The function 
normpdf(X,mean,stdev) is the pdf naturally. 

 
Norminv(p,mean,stdev) gives the inverse of the normcdf function and normsinv(p) 
gives the inverse for the standard normal. 

Matlab Code underneath previous graphs 
 

  
Showing Histogram of Poll Averages 

NN = 10000; % number of simulations 

Npart = 500; % each poll has 500 participants 

 

polls = zeros(1,NN);   

 

for indx = 1:NN 

    x = rand(Npart,1); % create 500 'opinions' 

    x1 = (x > 0.5); % set equal to zero or one 

    polls(indx) = mean(x1); % find the mean 

end 

 

hist(polls) % gives a histogram of all of the simulated polls 

bootstrap_p = (sum(polls >= 0.53) / NN) % counts fraction of them 

that are 0.53 or higher 

 



Showing Narrowing Distribution of Larger Polls: 
NN = 10000; % number of simulations 

Npart = [10 20 30 50 100 250 500 1000]; 

polls = zeros(8,NN);   

  

for indxj = 1:length(Npart) 

    for indx = 1:NN 

        x = rand(Npart(indxj),1); % create 500 'opinions' 

        x1 = (x > 0.5); % set equal to zero or one 

        polls(indxj,indx) = mean(x1); % find the mean 

    end 

end 

 

figure(1) 

semilogx(Npart,polls','k.') 

 

Illustrating the Law of Large Numbers 
% illustrate the Law of Large Numbers 

% kfoster 

close all; clear all; format compact; 

 

NN = 1000; % number of draws 

KK = 100; 

pp = 0.9;  % true probability of Bernoulli draws 

 

X = (unifrnd(zeros(NN,KK),1) < pp); % creates draws from 

uniform(0,1) 

Xbar = zeros(NN,KK); 

 

for indx = 1:NN 

    Xbar(indx,:) = mean(X(1:indx,:)); 

end 

 

%plot(linspace(1,NN,NN),Xbar(:,1)) 

 

% what fraction are within 2 s e of mean? 

Y = Xbar'; 

Z = (Y - (ones(KK,1)*mean(Y)))./(ones(KK,1)*std(Y)); 

count_in = sum(abs(Z)<1.96); 

 

for indx2 = 10:10:KK 

    figure(indx2) 

    hist(Xbar(indx2,:)) 

    xlabel(count_in(indx2)) 

    pause(7) 

end 

 

 
 

Side Note: The basic property, that the distribution is normal whatever the time interval, 
is what makes the normal distribution {and related functions, called Lévy distributions} 
special.  Most distributions would not have this property so daily changes could have 
different distributions than weekly, monthly, quarterly, yearly, or whatever! 

 
 



Recall from calculus the idea that some functions are not differentiable in places – they take a 
turn that is so sharp that, if we were to approximate the slope of the function coming at it from 

right or left, we would get very different answers.  The function, y x , is an example: at zero 

the left-hand derivative is -1; the right-hand derivative is 1.  It is not differentiable at zero – it 
turns so sharply that it cannot be well approximated by local values.  But it is continuous – it 
can be continuous even if it is not differentiable. 
 
Now suppose I had a function that was everywhere continuous but nowhere differentiable – at 
every point it turns so sharply as to be unpredictable given past values.  Various such functions 
have been derived by mathematicians, who call it a Wiener process (it generates Brownian 
motion).  (When Einstein visited CCNY in 1905 he discussed his paper using Brownian motion 
to explain the movements of tiny particles in water, that are randomly bumped around by 
water molecules.)  This function has many interesting properties – including an important link 
with the Normal distribution.  The Normal distribution gives just the right degree of variation 
to allow continuity – other distributions would not be continuous or would have infinite 
variance. 
 
Note also that a Wiener process has geometric form that is independent of scale or orientation 
– a Wiener process showing each day in the year cannot be distinguished from a Wiener 
process showing each minute in another time frame.  As we noted above, price changes for any 
time interval are normal, whether the interval is minutely, daily, yearly, or whatever.  These are 
fractals, curious beasts described by mathematicians such as Mandelbrot, because normal 
variables added together are still normal.  (You can read Mandelbrot's 1963 paper in the 
Journal of Business, which you can download from JStor – he argues that Wiener processes are 
unrealistic for modeling financial returns and proposes further generalizations.) 
 
The Normal distribution has  a pdf which looks ugly but isn't so bad once you break it down.  It 

is proportional to 
2xe .  This is what gives it a bell shape:  

 



 
To make this a real probability we need to have all of its area sum up to one, so the probability 
density function (PDF) for a standard normal (with zero mean and standard deviation of one) is 

2

2
1

2

x

e




. 

 
To allow a mean, µ, different from zero and a standard deviation, σ, different from one, we 
modify the formula to this: 

 
2

22
1

2

x

Npdf e





 




 . 

 
The connection with e is useful if it reminds you of when you learned about "natural 
logarithms" and probably thought "what the heck is 'natural' about that ugly thing?!"  But you 
learn that it comes up everywhere (think it's bad now? wait for differential equations!) and 
eventually make your peace with it.  So too the 'normal' distribution. 
 
If you think that the PDF is ugly then don't feel bad – its discoverer didn't like it either.  Stigler's 
History of Statistics relates that Laplace first derived the function as the limit of a binomial 
distribution as n  but couldn't believe that anything so ugly could be true.  So he put it 
away into a drawer until later when Gauss derived the same formula (from a different exercise) 
– which is why the Normal distribution is often referred to as "Gaussian".  The Normal 
distribution arises in all sorts of other cases: solutions to partial differential equations; in 
physics Maxwell used it to describe the diffusion of gases or heat (again Brownian motion); in 
information theory where it is connected to standard measures of entropy (Kullback Liebler); 
even in the distribution of prime factors in number theory, the Erdős–Kac Theorem. 
 
Finally I'll note the statistical quincunx, which is a great word since it sounds naughty but is 
actually geeky (google it or I'll try to get an online version to play in class). 
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Estimating Parameters 
 

 
Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 
Students will be able to: 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

 
The sample average has a normal distribution.  This is hugely important for two reasons: one, it 
allows us to estimate a parameter, and two, because it allows us to start to get a handle on the 
world and how we might be fooled.   
 
Estimating a parameter 
The basic idea is that if we take the average of some sample of data, this average should be a 
good estimate of the true mean.  For many beginning students this idea is so basic and obvious 
that you never think about when it is a reasonable assumption and when it might not be.  For 
example, one of the causes of the Financial Crisis was that many of the 'quants' (the 
quantitative modelers) used overly-optimistic models that didn't seriously take account of the 
fact that financial prices can change dramatically.  Most financial returns are not normally 
distributed!  But we'll get more into that later; for now just remember this assumption.  Later 
we'll talk about things like bias and consistency. 
 
Variation around central mean 
Knowing that the sample average has a normal distribution also helps us specify the variation 
involved in the estimation.  We often want to look at the difference between two sample 
averages, since this allows us to tell if there is a useful categorization to be made: are there 
really two separate groups?  Or do they just happen to look different? 
 
How can we try to guard against seeing relationships where, in fact, none actually exist? 
To answer this question we must think like statisticians.  To "think like a statistician" is to do 
mental handstands; it often seems like looking at the world upside-down.  But as you get used 
to it, you'll discover how valuable it is.  (There is another related question: "What if there really 
is a relationship but we don't find evidence in the sample?"  We'll get to that.) 
 
The first step in "thinking like a statistician" is to ask, What if there were actually no   
relationship;  zero difference?  What would we see? 
 
Consider two random variables, X and Y; we want to see if there is a difference in mean 

between them.  We know that the sample averages are distributed normally so both X  and Y  
are distributed normally.  We know additionally that linear functions of normal distributions 

are normal as well, so  X Y  is distributed normally.    If there were no difference in the 

means of the two variables then  X Y  would have a true mean of zero; 0
X Y



 .  But we 

are not likely to ever see a sample mean of exactly zero!  Sometimes we will probably see a 



positive number, sometimes a negative.  How big of a difference would convince us?  A big 
difference would be evidence in favor of different means; a small difference would be evidence 
against.  But, in the phrase of Dierdre McCloskey, "How big is big?" 
 
Let's do an example.  X and Y are both distributed normally but with a moderately error 
relative to their mean (a modest signal-to-noise ratio), so X~N(10,3) and Y~N(12,3), with 50 
observations.  
 

In our sample the difference is 0.95;  X Y =-0.95. 

 
A histogram of these differences shows: 

 
 
 Now we consider a rather strange thing: suppose that there were actually zero difference – 
what might we see?  On the Excel sheet "normal_differences" (nothin' fancy) we look at 1000 
repetitions of a sample of 50 observations of X and Y.   
 
A histogram of 1000 possible samples in the case where there was no difference shows this: 
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So a difference of -0.95 is smaller than all but 62 of the 1000 random tries.  We can say that, if 
there were actually no difference between X and Y, we would get something from the range of 
values above.  Since we actually estimated -0.95, which is smaller than 62 of 1000, we could 
say that "there is just a 6.2% chance that X and Y could really have no difference but we'd see 
such a small value." 
 
 
Law of Large Numbers 
Probability and Statistics have many complications with twists and turns, but it all comes down 
to just a couple of simple ideas.  These simple ideas are not necessarily intuitive – they're not 
the sort of things that might, at first, seem obvious.  But as you get used to them, they'll 
become your friend. 
 
With computers we can take much of the complicated formulas and derivations and just do 
simple experiments.  Of course an experiment cannot replace a formal proof, but for the 
purposes of this course you don't need to worry about a formal proof. 
 
One basic idea of statistics is the "Law of Large Numbers" (LLN).  The LLN tells us that certain 
statistics (like the average) will very quickly get very close to the true value, as the size of the 
random sample increases.  This means that if I want to know, say, the fraction of people who 
are right-handed or left-handed, or the fraction of people who will vote for Politician X versus 
Y, I don't need to talk with every person in the population. 
 
This is strenuously counter-intuitive.  You often hear people complain, "How can the pollsters 
claim to know so much about voting?  They never talked to me!"  But they don't have to talk to 
everyone; they don't even have to talk with very many people.  The average of a random 
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sample will "converge" to the true value in the population, as long as a few simple assumptions 
are satisfied. 
 
Instead of a proof, how about an example?  Open an Excel spreadsheet (or OpenOffice Calc, if 
you're an open-source kid).  We are going to simulate the number of people who prefer 
politician X to Y.  
 
We can do this because Excel has a simple function, RAND(), which picks a random number 
between 0 and 1.  So in the first cell,A1, I type "=RAND()".  I'm going to pick a fraction, 45% -- 
meaning that I will assume that politician X is supported by 45% of the population; in Excel this 
means that I will write, in cell B1, " =IF(A1<0.45,1,0)".  [Excel has some of the most ponderous 
inelegant programming on the planet; this "IF" statement first gives the condition, "A1 < 0.45", 
that is to be determined to be either true or false, then after the comma "1" tells it to show the 
value 1 if true, then after the comma the "0" tells it to show the value 0 if false.] 
 
Assume that there are 1000 people in the population, so copy and paste the contents of cells 
A1 and B1 down to all of the cells A2 through A1000 and B2 through B1000.  Now this gives us 
1000 people, who are randomly assigned to prefer either politician X or Y.  In B1001 you can 
enter the formula "=SUM(B1:B1000)" which will find out how many people (of 1000) who would 
vote for Politician X.  Go back to cell C1 and enter the formula "=B1001/1000" – this tells you 
the fraction of people who are actually backing X (not quite equal to the percentage that you 
set at the beginning, but close). 
 
Next suppose that we did a survey and randomly selected just 30 people for our poll.  We know 
that we won't get the exact right answer, but we want to know "How inaccurate is our answer 
likely to be?"  We can figure that out; again with some formulas or with some computing 
power. 
 
For my example (shown in the spreadsheet, samples_for_polls.xls) I first randomly select one of 
the people in the population with the formula, in cell A3, =ROUND(1+RAND()*999,0).  This 

takes a random number between 0 and 1 (RAND()), multiplies it by 999 so that I will have a 
random number between 0 and 999, then adds 1 to get a random number between 1 and 1000.  
Then it rounds it off to be an integer (that's the =ROUND( ,0) part).  

 
Next in B3 I write the formula, =INDIRECT(CONCATENATE("population!B",A3)).  

The inner part, CONCATENATE("population!B",A3), takes the random number that we 
generated in column A and makes it into a cell reference.  So if the random number is 524 then 
this makes a cell address, population!B524.  Then the =INDIRECT(population!B524) 

tells Excel to operate on it as if it were a cell address and return the value in B524 or the 
worksheet that I labeled "population". 
 
On the worksheet I then copied these formulas down from A2 to B32 to get a poll of the views 
of 30 randomly-selected people.  Then cell B1 gets the formula, =SUM(B3:B32)/30.  This 

tells me what fraction of the poll support the candidate, if the true population has 45% 



support.  I copied these columns five times to create 5 separate polls.  When I ran it (the 
answers will be different for you), I got 4 polls showing less than 50% support (in a vote, that's 
the relevant margin) and 1 showing more than 50% support, with a rather wide range of values 
from 26% to 50%.  (If you hit "F9" you will get a re-calculation, which takes a new bunch of 

random numbers.) 
 
Clearly just 30 people is not a great poll;  a larger poll would be more accurate.  (Larger polls are 
also more expensive so polling organizations need to strategize to figure out where the 
marginal cost of another person in the poll equals the marginal benefit.) 
 
In the problem set, you will be asked to do some similar calculations.  If you have some basic 
computer programming background then you can use a more sophisticated program to do it 
(to create histograms and other visuals, perhaps).  Excel is a donkey – it does the task but 
slowly and inelegantly. 
 
So we can formulate many different sorts of questions once we have this figured out. 
 
First the question of polls: if we poll 500 people to figure out if they approve or disapprove of 
the President, what will be the standard error?   
 

With some math ( ) we can figure out a formula for the standard error of the sample 
average.  It is just the standard deviation of the sample divided by the square root of the 
sample size.  So the sample average is distributed normally with mean of µ and standard error 

of sse
N

 .  This is sometimes written compactly as ~ ,
s

X N
N


 
 
 

. 

 
Sometimes this causes confusion because in calculating the standard error, s, we divided by 

the square root of (N-1), since 
 

2

1

1

N
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i

X X

s
N









, so it seems you're dividing twice.  But this is 

correct: the first division gets us an estimate of the sample's standard deviation; the second 
division by the square root of N gets us the estimate of the sample average's standard error. 
 
The standardized test statistic (sometimes called Z-score since Z will have a standard normal 

distribution) is the mean divided by its standard error, 
X X X

N
sse s

N

  .  This shows 

clearly that a larger sample size (bigger N) amplifies differences of X  from zero (the usual null 
hypothesis).  A small difference, with only a few observations, could be just chance; a small 
difference, sustained over many observations, is less likely to be just chance. 
 



One of the first things to note about this formula is that, as N rises (as the sample gets larger) 
the standard error gets smaller – the estimator gets more precise.  So if N could rise towards 

infinity then the sample average would converge to the true mean; we write this as 
p

X   

where the 
p

  means "converges in probability as N goes toward infinity". 

 
So the sample average is unbiased.  This simply means that it gets closer and closer to the true 
value as we get more observations.  Generally "unbiased" is a good thing, although later we'll 
discuss tradeoffs between bias and variance. 
 
Return to the binomial distribution, and its normal approximation.  We know that std error has 
its maximum when p= ½, so if we put in p=0.5 then the standard error of a poll is, at worst, 

1

2 n
, so more observations give a better approximation.  See Excel sheet poll_examples.  We'll 

return to this once we learn a bit more about the standard error of means. 
 
 

 A bit of Math: 
We want to use our basic knowledge of linear combinations of normally-distributed variables 
to show that, if a random variable, X, comes from a normal distribution then its average will 
have a normal distribution with the same mean and the standard deviation of the sample 
divided by the square root of the sample size, 

~ ,
s

X N
N


 
 
 

. 

 

The formula for the average is 
1

1 n

i

i

X X
n 

  .  Consider first a case where there are just 2 

observations.  This case looks very similar to our rule about, if W CX DY  , then 

 2 2 2 2~ , 2X Y X Y XYW N C D C D CD       .  With N=2, this is 1 2

1 1

2 2
X X X  , which has 

mean 1 2

1 1

2 2
X X  , and since each X observation comes from the same distribution then 

1 2X X   so the mean is X  (it's unbiased).  You can work it out when there are n  

observations. 
 
Now the standard error of the mean is 

2 2

2 2 2 2 2 2

1 2 1 2 1 2

1 1 1 1 1 1 1
2

2 2 2 2 4 4 2
X X XY X X X X      

      
           

      
.  The covariance is 

zero because we assume that we're making a random sample.   Again since they come from 



the same distribution, 1 2X X   , the standard error is 

2 2 2 21 1 2 2 1
2

2 2 2 2 2
X X X X X X          . 

 
With n observations, the mean works out the same and the standard error of the average is 

2

2 2 2

2 2
1 1

1 1n n
X

x x x

i i

n

n n n n


  

 

 
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 
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Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 
Students will be able to: 

 construct and interpret a confidence interval for a normally distributed random variable, and determine the 
probability that a normally distributed random variable lies inside a given confidence interval; 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

 explain the construction of confidence intervals; 
 define a hypothesis, describe the steps of hypothesis testing, interpret and discuss the choice of the null hypothesis 

and alternative hypothesis, and distinguish between one-tailed and two-tailed tests of hypotheses; 
 define and interpret a test statistic, a Type I and a Type II error, and a significance level, and explain how significance 

levels are used in hypothesis testing; 

 
Hypothesis Testing 
One of the principal tasks facing the statistician is to perform hypothesis tests.  These are a 
formalization of the most basic questions that people ask and analyze every day – just 
contorted into odd shapes.  But as long as you remember the basic common sense underneath 
them, you can look up the precise details of the formalization that lays on top. 
 
The basic question is "How likely is it, that I'm being fooled?"  Once we accept that the world is 
random (rather than a manifestation of some god's will), we must decide how to make our 
decisions, knowing that we cannot guarantee that we will always be right.  There is some risk 
that the world will seem to be one way, when actually it is not.  The stars are strewn randomly 
across the sky but some bright ones seem to line up into patterns.  So too any data might 
sometimes line up into patterns. 
 



A formal hypothesis sets a mathematical condition that I want to test.  Often this condition 
takes the form of some parameter being zero for no relationship or no difference. 
 
Statisticians tend to stand on their heads and ask: What if there were actually no relationship?  
(Usually they ask questions of the form, "suppose the conventional wisdom were true?")  This 
statement, about "no relationship," is called the Null Hypothesis, sometimes abbreviated as 
H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 
 
Before we even begin looking at the data we can set down some rules for this test.  We know 
that there is some probability that nature will fool me, that it will seem as though there is a 
relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?" 
 
The "likelihood that I'm being fooled" is the p-value. 
 
For a scientific experiment we typically first choose the level of certainty that we desire.  This is 
called the significance level.  This answers, "How low does the p-value have to be, for me to 
accept the formal hypothesis?"  To be fair, it is important that we set this value first because 
otherwise we might be biased in favor of an outcome that we want to see.  By convention, 
economists typically use 10%, 5%, and 1%; 5% is the most common. 
 
A five percent level of a test is conservative, it means that we want to see so much evidence 
that there is only a 5% chance that we could be fooled into thinking that there's something 
there, when nothing is actually there.  Five percent is not perfect, though – it still means that of 
every 20 tests where I decide that there is a relationship there, it is likely that I'm being fooled 
in one of those – I'm seeing a relationship where there's nothing there. 
 
To help ourselves to remember that we can never be truly certain of our judgment of a test, we 
have a peculiar language that we use for hypothesis testing.  If the "likelihood that I'm being 
fooled" is less than 5% then we say that the data allow us to reject the null hypothesis.  If the 
"likelihood that I'm being fooled" is more than 5% then the data do not reject the null 
hypothesis. 
 
Note the formalism: we never "accept" the null hypothesis.  Why not?  Suppose I were doing 
something like measuring a piece of machinery, which is supposed to be a centimeter long.  
The null hypothesis is that it is not defective and so is one centimeter in length.  If I measure 
with a ruler I might not find any difference to the eye.  So I cannot reject the hypothesis that it 
is one centimeter.  But if I looked with a microscope I might find that it is not quite one 
centimeter!  The fact that, with my eye, I don't see any difference, does not imply that a better 
measurement could not find any difference.  So I cannot say that it is truly exactly one 
centimeter; only that I can't tell that it isn't. 
 



So too with statistics.  If I'm looking to see if some portfolio strategy produces higher returns, 
then with one month of data I might not see any difference.  So I would not reject the null 
hypothesis (that the new strategy is no improvement).  But it is possible that the new strategy, 
if carried out for 100 months or 1000 months or more might show some tiny difference. 
 
Not rejecting the null is saying that I'm not sure that I'm not being fooled.  (Read that sentence 
again; it's not immediately clear but it's trying to make a subtle and important point.) 
 
To summarize, Hypothesis Testing asks, "What is the chance that I would see the value that 
I've actually got, if there truly were no relationship?"  If this p-value is lower than 5% then I 
reject the null hypothesis of "no relationship."  If the p-value is greater than 5% then I do not 
reject the null hypothesis of "no relationship." 
 
The rest is mechanics. 
 

The null hypothesis would tell that a parameter has some particular value, say  zero: 0 : 0H   ; 

the alternative hypothesis is : 0AH   .  Under the null hypothesis the parameter has some 

distribution (often normal), so  0 : ~ 0, std errH N  .  Generally we have an estimate for std err

, which is se  (for small samples this inserts additional uncertainty).  So I know that, under the 

null hypothesis, 
se


 has a standard normal distribution (mean of zero and standard deviation of 

one).  I know exactly what this distribution looks like, it's the usual bell-shaped curve: 

 
So from this I can calculate, "What is the chance that I would see the value that I've actually 
got, if there truly were no relationship?," by asking what is the area under the curve that is 
farther away from zero than the value that the data give.  (I still don't know what value the data 
will give!  I can do all of this calculation beforehand.) 
 



Any particular estimate of   is generally going to be X .  So the test statistic is formed with 

X

se
. 

 
Looking at the standard normal pdf, a value of the test statistic of 1.5 would not meet the 5% 
criterion (go back and calculate areas under the curve).  A value of 2 would meet the 5% 
criterion, allowing us to reject the null hypothesis.  For a 5% significance level, the standard 
normal critical value is 1.96: if the test statistic is larger than 1.96 (in absolute value) then its p-
value is less than 5%, and vice versa.  (You can find critical values by looking them up in a table 
or using the computer.) 
 

Sidebar: Sometimes you see people do a one-sided test, which is within the 
letter of the law but not necessarily the spirit of the law (particularly in 
regression formats).  It allows for less restrictive testing, as long as we believe 
that we know that there is only one possible direction of deviation (so, for 
example, if the sample could be larger than zero but never smaller).  But in this 
case maybe the normal distribution is inapplicable. 

 
The test statistic can be transformed into measurements of   or into a confidence interval. 

 

If I know that I will reject the null hypothesis of 0   at a 5% level if the test statistic, 
X

se
, is 

greater than 1.96 (in absolute value), then I can change around this statement to be about X .  

This says that if the estimated value of X  is less than 1.96 standard errors from zero, we 
cannot reject the null hypothesis.  So cannot reject if: 

 1.96
X

se
  

1.96X se  

1.96 1.96se X se   . 

This range,  1.96 ,1.96se se , is directly comparable to X .  If I divide X  by its standard error 

then this ratio has a normal distribution with mean zero and standard deviation of one.  If I 

don't divide then X  has a normal distribution with mean zero and standard deviation, se . 
 

If the null hypothesis is not zero but some other number, null , then under the null hypothesis 

the estimator would have a normal distribution with mean of null  and standard error, se .  To 

transform this to a standard normal would mean subtracting the mean and dividing by se , so 

cannot reject if 1.96
nullX

se


 , i.e. cannot reject if X  is within the range, 

 1.96 , 1.96null nullse se   . 

 



Confidence Intervals 
We can use the same critical values to construct a confidence interval for the estimator, usually 

expressed in the form 1.96X se .  This shows that, for a given sample size (therefore se , 
which depends on the sample size) that there is a 95% likelihood that the interval formed 
around a given estimator contains the true value. 
 
This relates to hypothesis testing because if the confidence interval includes the null 
hypothesis then we cannot reject the null; if the null hypothesis value is outside of the 
confidence interval then we can reject the null. 
 
Find p-values 
We can also find p-values associated with a particular null hypothesis by turning around the 
process outlined above.  If the null hypothesis is zero, then with a 5% significance level we 

reject the null if 
X

se
 is greater than 1.96 in absolute value.  What if the ratio 

X

se
 were 2 – what is 

the smallest significance level that would still reject?  (Check your understanding: is it more or 
less than 5%?) 
 

We can compute the ratio 
X

se
 and then convert this number to a p-value, which is the smallest 

significance level that would still reject the null hypothesis (and if the null is rejected at a low 
level then it would automatically be rejected at any higher levels). 
 
Type I and Type II Errors 
Whenever we use statistics we must accept that there is a likelihood of errors.  In fact we 
distinguish between two types of errors, called (unimaginatively) Type I and Type II.  These 
errors arise because a null hypothesis could be either true or false and a particular value of a 
statistic could lead me to reject or not reject the null hypothesis, H0.  A table of the four 
outcomes is: 

 H0 is true H0 is false 

Do not reject H0 good! oops – Type II 
Reject H0 oops – Type I good! 

Our chosen significance level (usually 5%) gives the probability of making an error of Type I.  
We cannot control the level of Type II error because we do not know just how far away H0 is 
from being true.  If our null hypothesis is that there is a zero relationship between two 
variables, when actually there is a tiny, weak relationship of 0.0001%, then we could be very 
likely to make a Type II error.  If there is a huge, strong relationship then we'd be much less 
likely to make a Type II error. 
 
There is a tradeoff (as with so much else in economics!).  If I push down the likelihood of 
making a Type I error (using 1% significance not 5%) then I must be increasing the likelihood of 
making a Type II error.   
 



Edward Gibbon notes that the emperor Valens would "satisfy his anxious suspicions by the 
promiscuous execution of the innocent and the guilty" (chapter 26).  This rejects the null 
hypothesis of "innocence"; so a great deal of Type I error was acceptable to avoid Type II error. 
 
Every email system fights spam with some sort of test: what is the likelihood that a given 
message is spam?  If it's spam, put it in the "Junk" folder; else put it in the inbox.  A Type I error 
represents putting good mail into the "Junk" folder; Type II puts junk into your inbox. 
 
Examples 
Let's do some examples.   
Assume that the calculated average is 3, the sample standard deviation is 15, and there are 100 
observations.  The null hypothesis is that the average is zero.  The standard error of the 

average is 
15

1.5
100

se   .  We can immediately see that the sample average is more than two 

standard errors away from zero so we can reject at a 95% confidence level. 
 

Doing this step-by-step, the average over its standard error is 
3

2
1.5

X

se
  .  Compare this to 

1.96 and see that 2 > 1.96 so we can reject.  Alternately we could calculate the interval, 

 1.96 ,1.96s s , which is     1.96 1.5 , 1.96 1.5   = (-2.94, 2.94), outside of which we reject the 

null.  And 3 is outside that interval.  Or calculate a 95% confidence interval of 

 3 2.94 0.06,5.94  , which does not contain zero so we can reject the null.  The critical value 

for the estimate of 3 is 4.55% (found from Excel either 2*(1-NORMSDIST(2)) if using the 
standard normal distribution or 2*(1-NORMDIST(3,0,1.5,TRUE)) if using the general normal 
distribution with a mean of zero and standard error of 1.5). 
 
If the sample average were -3, with the same sample standard deviation and same 100 
observations, then the conclusions would be exactly the same. 
 
Or suppose you find that the average difference between two samples, X and Y, (i.e. 

 
1

1 n

i i

i

X Y X Y
n 

   ) is -0.0378.  The sample standard deviation is 0.357.  The number of 

observations is 652.  These three pieces of information are enough to find confidence intervals, 
do t-tests, and find p-values. 
 
How? 
 
First find the standard error of the average difference.  This standard error is 0.357 divided by 

the square root of the number of observations, so 
.357

0.01398
652

 . 

 



So we know (from the Central Limit Theorem) that the average has a normal distribution.  Our 
best estimate of its true mean is the sample average, -0.0378.  Our best estimate of its true 
standard error is the sample standard error, 0.01398.  So we have a normal distribution with 
mean -0.0378 and standard error 0.01398. 
 
We can make this into a standard normal distribution by adding 0.0378 and dividing by the 
sample standard error, so now the mean is zero and the standard error is one. 
 
We want to see how likely it would be, if the true mean were actually zero, that we would see a 
value as extreme as -0.0378.  (Remember: we're thinking like statisticians!) 
 

The value of -0.0378 is 
0.0378

0.01398


 = -2.70 standard deviations from zero.    

 
From this we can either compare this against critical t-values or use it to get a p-value. 
 
To find the p-value, we can use Excel just like in the homework assignment.  If we have a 
standard normal distribution, what is the probability of finding a value as far from zero as -2.27, 
if the true mean were zero?  This is 2*(1-NORMSDIST(-2.27)) = 0.6%.  The p-value is 0.006 or 
0.6%.  If we are using a 5% level of significance then since 0.6% is less than 5%, we reject the 
null hypothesis of a zero mean.  If we are using a 1% level of significance then we can reject the 
null hypothesis of a zero mean since 0.6% is less than 1%. 
 
Or instead of standardizing we could have used Excel's other function to find the probability in 
the left tail, the area less than -0.0378, for a distribution with mean zero and standard error 
0.01398, so 2*NORMDIST(-0.0378,0,0.01398,TRUE) = 0.6%. 
 
Standardizing means (in this case) zooming in, moving from finding the area in the tail of a 
very small pdf, like this: 



 
to moving to a standard normal, like this: 

 
 
But since we're only changing the units on the x-axis, the two areas of probability are the same. 
 



We could also work backwards.  We know that if we find a standardized value greater (in 
absolute value) than 1.96, we would reject the null hypothesis of zero at the 5% level.  (You can 
go back to your notes and/or HW1 to remind yourself of why 1.96 is so special.) 
 

We found that for this particular case, each standard deviation is of size 
.357

0.01398
652

 .  So 

we can multiply 1.96 times this value to see that if we get a value for the mean, which is farther 
from zero than 0.01398*1.96 = 0.0274, then we would reject the null.  Sure enough, our value 
of -0.0378 is farther from zero, so we reject. 
 
Alternately, use this 1.96 times the standard error to find a confidence interval.  Choose 1.96 
for a 95% confidence interval, so the confidence interval around -0.0378 is plus or minus 
0.0274, 0.0378 0.0274  , which is the interval (-0.0652, -0.0104).  Since this interval does not 
include zero we can be 95% confident that we can reject the null hypothesis of zero. 
 
Complications from a Series of Hypothesis Tests 
Often a modeler will make a series of hypothesis tests to attempt to understand the inter-
relations of a dataset.  However while this is often done, it is not usually done correctly.  Recall 
from our discussion of Type I and Type II errors that we are always at risk of making incorrect 
inferences about the world based on our limited data.  If a test has an significance level of 5% 
then we will not reject a null hypothesis until there is just a 5% probability that we could be 
fooled into seeing a relationship where there is none.  This is low but still is a 1-in-20 chance.  If 
I do 20 hypothesis tests to find 20 variables that significantly impact some variable of interest, 
then it is likely that one of those variables is fooling me (I don't know which one, though).  It is 
also likely that my high standard of proof meant that there are other variables which are more 
important but which didn't seem it. 
 
Sometimes you see very stupid people who collect a large number of possible explanatory 
variables, run hundreds of regressions, and find the ones that give the "best-looking" test 
statistics – the ones that look good but are actually entirely fictitious.  Many statistical 
programs have procedures that will help do this; help the user be as stupid as he wants. 
 
Why is this stupid?  It completely destroys the logical basis for the hypothesis tests and makes 
it impossible to determine whether or not the data are fooling me.  In many cases this actually 
guarantees that, given a sufficiently rich collection of possible explanatory variables, I can run a 
regression and show that some variables have "good" test statistics – even though they are 
completely unconnected.  Basically this is the infamous situation where a million monkeys 
randomly typing would eventually write Shakespeare's plays.  A million earnest analysts, 
running random regressions, will eventually find a regression that looks great – where all of the 
proposed explanatory variables have test statistics that look great.  But that's just due to 
persistence; it doesn't reflect anything about the larger world.   
 



In finance, which throws out gigabytes of data, this phenomenon is common.  For instance 
there used to be a relationship between which team won the Super Bowl (in January) and 
whether the stock market would have a good year.  It seemed to be a solid result with decades 
of supporting evidence – but it was completely stupid and everybody knew it.  Analysts still 
work to get slightly-less-implausible but still completely stupid results, which they use to sell 
their securities. 
 
Consider the logical chain of making a number of hypothesis tests in order to find one 
supposedly-best model.  When I make the first test, I have 5% chance of making a Type I error.  
Given the results of this test, I make the second test, again with a 5% chance of making a Type I 
error.  The probability of not making an error on either test is (.95)(.95) = .9025 so the 
significance level of the overall test procedure is 1 - .9025 = 9.75%.  If I make three successive 
hypothesis tests, the probability of not making an error is .8574 so the significance level is 
14.26%.  If I make 10 successive tests then the significance level is over 40%!  This means that 
there is a 40% chance that the tester is being fooled, that there is not actually the relationship 
there that is hypothesized – and worse, the stupid tester believes that the significance level is 
just 5%. 
 
Hypothesis Testing with two samples 
In our examples we have often come up with a question where we want to know if there is a 
difference in mean between two groups.  From the ATUS, we could ask if men watch more TV 
than women, or who does more work around the house.  This is different than asking if there is 
no difference of time that a particular person spends on two activities. 
 
Suppose we use the ATUS data to compare the mean time that people 20-30 years spend 
watching and playing sports.  We might expect the mean to be around zero if watching and 
playing sports are complements.  (Appendix has details.)  So we get summary stats of the 
average difference between the time people play sports and the time that they watch sports; 
of the 13,255 people between 20-30 years old, the average is 15.12 minutes with a standard 

deviation of 63.81 minutes.  So the standard error of the difference is 
63.81

13255

s

n
  = 0.55, so 

the fifteen minutes is over 27 standard deviations away and is not zero. 
 
But this is a bit odd because not everybody even does either activity (there are many who 
report zero time spent watching or playing sports); we are really thinking of two different 
groups of people.  And then we might want to further subdivide, for example asking if this 
difference is larger or smaller for men/women. 
 
Consider the gender divide: there are 7749 women and 5506 men.  The women spend 11.56 
minutes more playing than watching sports, with a standard deviation of 40.92.  The men 
spend an average of 26.02 minutes more watching, with a stdev of 76.79.  So both are 
statistically significantly different from zero.  But are they statistically significantly different 



from each other?  Our formula that we learned last time has only one n – what do we do if we 
have two samples? 
 
Basically we want to figure out how to use the two separate standard errors to estimate the 
joint standard error; otherwise we'll use the same basic strategy to get our estimate, subtract 
off the null hypothesis (usually zero), and divide by its standard error.  We just need to know 
what is that new standard error. 
 
To do this we use the sum of the two sample variances: if we are testing group 1 vs group 2, 

then a test of just group 1 would estimate its variance as 
2

1

1

s

n
, a test of group 2 would use 

2

2

2

s

n
, 

and a test of the group would estimate the standard error as 
2 2

1 2

1 2

s s

n n
 . 

 
We can make either of two assumptions: either the standard deviations are the same (even 
though we don't know them) or they're different (even though we don't know how different).  
It is more conservative to assume that they're different (i.e. don't assume that they're the 
same) – this makes the test less likely to reject the null. 
 
Assuming that the standard errors are different, we compare this test statistic against a t-

distribution with degrees of freedom of the minimum of either  1 1n   or  2 1n  . 

 
 
 
 
 
 
 
 
 


