
Lecture Notes 6 
Econ B2000, MA Econometrics 
Kevin R Foster, CCNY 
Fall 2012 

 

 
 
To Recap for univariate OLS: 

 A zero slope for the line is saying that there is no relationship. 

 A line has a simple equation, that Y = 0 + 1X  

 How can we "best" find a value of ? 

 We know that the line will not always fit every point, so we need to be a bit more careful 
and write that our observed Y values, Yi (i=1, …, N), are related to the X values, Xi, as: Yi 

= 0 + 1Xi + ui.  The ui term is an error – it represents everything that we haven't yet 

taken into consideration. 

 Suppose that we chose values for 0 and 1 that minimized the squared values of the 

errors.  This would mean  
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us unique values of  (as opposed to the eyeball method, where different people can 

give different answers). 

 The 0 term is the intercept and the 1 term is the slope, 
dY

dX
. 

 These values of  are the Ordinary Least Squares (OLS) estimates.  If the Greek letters 

denote the true (but unknown) parameters that we're trying to estimate, then denote 

0̂  and 
1̂  as our estimators that are based on the particular data.  We denote ˆ

iY  as the 

predicted value of what we would guess Yi would be, given our estimates of 0 and 1, 

so that 
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 There are formulas that help people calculate 
0̂  and 

1̂  (rather than just guessing 

numbers); these are: 
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Why OLS?  It has a variety of desirable properties, if the data being analyzed satisfy some very 
basic assumptions.  Largely because of this (and also because it is quite easy to calculate) it is 



widely used in many different fields.  (The method of least squares was first developed for 
astronomy.) 

 OLS requires some basic assumptions (more below) 

 These assumptions are costly; what do they buy us?  First, if true then the OLS 
estimates are distributed normally in large samples.  Second, it tells us when to be 
careful. 

 Must distinguish between dependent and independent variables (no simultaneity). 

 There are formulas that you can use, for calculating the standard errors of the  

estimates, however for now there's no need for you to worry about them.  The 
computer will calculate them.  (Also note that the textbook uses a more complicated 
formula than other texts, which covers more general cases.  We'll talk about that later.) 
 

Regression Details 
 

Hypotheses about regression coefficients: t-stats, p-values, and confidence intervals again!  
Usually two-sided (rarely one-sided). 
 
We will regularly be testing if the coefficients are significant; i.e. is there evidence in the data 
that the best estimate of the coefficient is different from zero?  This goes back to our original 
"Jump into OLS" where we looked at the difference between the Hong Kong/Singapore stock 
returns and the US stock returns/interest rate.  A zero slope is evidence against any 
relationship – this shows that the best guess of the value of Y does not depend on current 
information about the level of X.  So coefficient estimates that are statistically 
indistinguishable from zero are not evidence that the particular X variable is useful in 
prediction. 
 

A hypothesis test of some statistical estimate uses this estimator (call it X̂ ) and the 

estimator's standard error (denote it as 
X̂

se ) to test against some null hypothesis value, nullX .  

To make the hypothesis test, form 
ˆ
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se


 , and – here is the magic! – under certain 

conditions this Z will have a Standard Normal distribution (or sometimes, if there are few 
degrees of freedom, a t-distribution; later in more advanced stats courses, some other 
distribution).  The magic happens because if Z has a Standard Normal distribution then this 

allows me to measure if the estimate of X, X̂ , is very far away from nullX .  It's generally tough 

to specify a common unit that allows me to say sensible things about "how big is big?" without 
some statistical measure.  The p-value of the null hypothesis tells me, "If the null hypothesis 

were actually true, how likely is it that I would see this X̂  value?"  A low p-value tells me that 
it's very unlikely that my hypothesis could be true and yet I'd see the observed values, which is 
evidence against the null hypothesis. 
 



Often the formula, 
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   , and this is what SPSS prints out in the regression output labeled as "t".  This 

generally has a t-distribution (with enough degrees of freedom, a Standard Normal) so SPSS 
calculates the area in the tails beyond this value and labels it "Sig". 
 
This is in Chapter 5 of Stock & Watson. 
 
We know that the standard normal distribution has some important values in it, for example 
the values that are so extreme, that there is just a 5% chance that we could observe what we 
saw, yet the true value were actually zero.  This 5% critical value is just below 2, at 1.96.  So if 
we find a t-statistic that is bigger than 1.96 (in absolute value) then the slope would be 
"statistically significant"; if we find a t-statistic that is smaller than 1.96 (in absolute value) then 
the slope would not be "statistically significant".  We can re-write these statements into values 
of the slope itself instead of the t-statistic. 
 
We know from above that 
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and we've just stated that the slope is not statistically significant if: 

1.96t  . 

This latter statement is equivalent to: 
1.96 1.96t    

Which we can re-write as: 
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Which is equivalent to: 

     1 1 1
ˆ ˆ ˆ1.96 1.96se se      

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of 
zero, then the slope is not statistically significant; if we observe a slope farther from zero than 
1.96 standard errors, then the slope is statistically significant. 
 
This is called a "95% Confidence Interval" because this shows the range within which the 
observed values would fall, 95% of the time, if the true value were zero.  Different confidence 
intervals can be calculated with different critical values: a 90% Confidence Interval would need 
the critical value from the standard normal, so that 90% of the probability is within it (this is 
1.64). 
 



OLS is nothing particularly special.  The Gauss-Markov Theorem tells us that OLS is BLUE: 
Best Linear Unbiased Estimator (and need to assume homoskedasticity).  Sounds good, right?  
Among the linear unbiased estimators, OLS is "best" (defined as minimizing the squared error).  
But this is like being the best-looking economist – best within a very small and very particular 
group is not worth much!  Nonlinear estimators may be good in various situations, or we might 
even consider biased estimators. 
 
If X is a binary dummy variable 
Sometimes the variable X is a binary variable, a dummy, Di, equal to either one or zero (for 

example, female).  So the model is 0 1i i iY D u     can be expressed as 
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.  So this is just saying that Y has mean 0 + 1 in some cases and 

mean 0 in other cases.  So 1 is interpreted as the difference in mean between the two groups 

(those with D=1 and those with D=0).  Since it is the difference, it doesn't matter which group is 
specified as 1 and which is 0 – this just allows measurement of the difference between them. 
 
Other 'tricks' of time trends (& functional form) 

 If the X-variable is just a linear change [for example, (1,2,3,...25) or (1985, 
1986,1987,...2010)] then regressing a Y variable on this is equivalent to taking out a 
linear trend: the errors are the deviations from this trend. 

 If the Y-variable is a log function then the regression is interpreted as explaining 
percent deviations (since derivative of lnY = dY/Y, the percent change).  (So what would 
a linear trend on a logarithmic form look like?) 

 If both Y and X are logs then can interpret the coefficient as the elasticity. 

 examine errors to check functional form – e.g. height as a function of age works well for 
age < 12 but then breaks down 

 plots of X vs. both Y and predicted-Y are useful, as are plots of X vs. error (note how to 
do these in SPSS – the dialog box for Linear Regression includes a button at the right 
that says "Save...", then click to save the unstandardized predicted values and 
unstandardized residuals). 

 
In addition to the standard errors of the slope and intercept estimators, the regression line 
itself has a standard error.   
 
A commonly overall assessment of the quality of the regression is the R2 (displayed on the 
charts at the beginning automatically by SPSS).  This is the fraction of the variance in Y that is 

explained by the model so 0  R2  1.  Bigger is usually better, although different models have 

different expectations (i.e. it's graded on a curve). 
 
Statistical significance for a univariate regression is the same as overall regression significance 
– if the slope coefficient estimate is statistically significantly different from zero, then this is 



equivalent to the statement that the overall regression explains a statistically significant part 
of the data variation. 
 

- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

 
Multiple Regression – more than one X variable 
Regressing just one variable on another can be helpful and useful (and provides a great 
graphical intuition) but it doesn't get us very far. 
 
Consider this example, using data from the March 2010 CPS.  We limit ourselves to only 
examining people with a non-zero annual wage/salary who are working fulltime (WSAL_VAL 
> 0 & HRCHECK = 2).  We look at the different wages reported by people who label 
themselves as white, African-American, Asian, Native American, and Hispanic.  There are 
62,043 whites, 9,101 African-Americans, 4476 Asians, 2149 Native Americans, and 12,401 
Hispanics in the data who fulfill this condition. 
 
The average yearly salary for whites is $50,782; for African-Americans it is $39,131; for Asians 
$57,541; for Native Americans $38,036; for Hispanics it is $36,678.  Conventional statistical 
tests find that these averages are significantly different.  Does this prove discrimination?  No; 
there are many other reasons why groups of people could have different incomes such as 
educational level or age or a multitude of other factors.  (But it is not inconsistent with a 
hypothesis of racism: remember the difference, when evaluating hypotheses, between 'not 
rejecting' or 'accepting').  We might reasonably break these numbers down further. 
 
These groups of people are different in a variety of ways.  Their average ages are different 
between Hispanics, averaging 38.72 years, and non-Hispanics, averaging 42.41 years. So how 
much of the wage difference, for Hispanics, is due to the fact that they're younger?  We could 
do an ANOVA on this but that would omit other factors. 
 
The populations also different in gender ratios.  For whites, 57% were male; for African-
Americans 46% were male; for Hispanics 59% were male.  Since gender also affects income, 
we might think some of the wage gap could be due, not to racial discrimination, but to gender 
discrimination. 
 
But then they're also different in educational attainment!  Among the Hispanic workers, 30% 
had not finished high school; for African-Americans 8.8% had not; for whites 9% had not 
finished with a diploma.  And 12% of whites had an advanced degree while 8.3% of African 
Americans and 4.2% of Hispanics had such credentials.  The different fractions in educational 
attainment add credibility to the hypothesis that not all racial/ethnic variation means 
discrimination (in the labor market, at least – there could be discrimination in education so 
certain groups get less or worse education). 
 



Finally they're different in what section of the country they live in, as measured by Census 
region. 
 
So how can we keep all of these different factors straight? 

Multiple Regression 
From the standpoint of just using SPSS, there is no difference for the user between a univariate 
and multivariate linear regression.  Again use "Analyze\ Regression\ Linear ..." 
but then add a bunch of variables to the "Independent(s)" box. 
 

In formulas, model has k explanatory variables for each of  1,2,i n  observations (must 

have n > k) 
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Each coefficient estimate, notated as ˆ
j , has standardized distribution as t with (n – k) 

degrees of freedom. 
 
Each coefficient represents the amount by which the y would be expected to change, for a 
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Note that you must be a bit careful specifying the variables.  The CPS codes educational 
attainment with a bunch of numbers from 31 to 46 but these numbers have no inherent 
meaning.  So too race, geography, industry, and occupation.  If a person graduates high school 
then their grade coding changes from 38 to 39 but this must be coded with a dummy variable.  
If a person moves from New York to North Dakota then this increases their state code from 36 
to 38; this is not the same change as would occur for someone moving from North Dakota to 
Oklahoma (40) nor is it half of the change as would occur for someone moving from New York 
to North Carolina (37).  Each state needs a dummy variable. 
 
A multivariate regression can control for all of the different changes to focus on each item 
individually.  So we might model a person's wage/salary value as a function of their age, their 
gender, race/ethnicity (African-American, Asian, Native American, Hispanic), if they're an 
immigrant, six educational variables (high school diploma, some college but no degree, 
Associate's in vocational field, Associate's in academic field, a 4-year degree, or advanced 
degree), if they're married or divorced/widowed/separated, if they're a union member, and if 
they're a veteran.  Results (from the sample above, of March 2010 fulltime workers with non-
zero wage), are given by SPSS as: 
 
 

Model Summary 



Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .454
a
 .206 .206 46820.442 

a. Predictors: (Constant), Veteran (any), African American, Education: 

Associate in vocational, Union member, Education: Associate in 

academic, Native American Indian or Alaskan or Hawaiian, Divorced or 

Widowed or Separated, Asian, Education: Advanced Degree, Hispanic, 

Female, Education: Some College but no degree, Demographics, Age, 

Education: 4-yr degree, Immigrant, Married, Education: High School 

Diploma 

 

ANOVA
b
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 4.416E13 17 2.598E12 1185.074 .000
a
 

Residual 1.704E14 77751 2.192E9   

Total 2.146E14 77768    

a. Predictors: (Constant), Veteran (any), African American, Education: Associate in vocational, 

Union member, Education: Associate in academic, Native American Indian or Alaskan or Hawaiian, 

Divorced or Widowed or Separated, Asian, Education: Advanced Degree, Hispanic, Female, 

Education: Some College but no degree, Demographics, Age, Education: 4-yr degree, Immigrant, 

Married, Education: High School Diploma 

b. Dependent Variable: Total wage and salary earnings amount - Person 

 

 

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10081.754 872.477  11.555 .000 

Demographics, Age 441.240 15.422 .104 28.610 .000 

Female -17224.424 351.880 -.163 -48.950 .000 

African American -5110.741 539.942 -.031 -9.465 .000 

Asian 309.850 819.738 .001 .378 .705 

Native American Indian or 

Alaskan or Hawaiian 

-4359.733 1029.987 -.014 -4.233 .000 



Hispanic -3786.424 554.159 -.026 -6.833 .000 

Immigrant -3552.544 560.433 -.026 -6.339 .000 

Education: High School 

Diploma 

8753.275 676.683 .075 12.936 .000 

Education: Some College but 

no degree 

15834.431 726.533 .116 21.795 .000 

Education: Associate in 

vocational 

17391.255 976.059 .072 17.818 .000 

Education: Associate in 

academic 

21511.527 948.261 .093 22.685 .000 

Education: 4-yr degree 37136.959 712.417 .293 52.128 .000 

Education: Advanced Degree 64795.030 788.824 .400 82.141 .000 

Married 10981.432 453.882 .102 24.194 .000 

Divorced or Widowed or 

Separated 

4210.238 606.045 .028 6.947 .000 

Union member -2828.590 1169.228 -.008 -2.419 .016 

Veteran (any) -2863.140 666.884 -.014 -4.293 .000 

a. Dependent Variable: Total wage and salary earnings amount - Person 

 

For the "Coefficients" table, the "Unstandardized coefficient B" is the estimate of ̂ , the "Std. 

Error" of the unstandardized coefficient is the standard error of that estimate,  ˆse  .  (In 

economics we don't generally use the standardized beta, which divides the coefficient estimate by 

the standard error of X.)  The "t" given in the table is the t-statistic, 
 

ˆ

ˆ
t

se




  and "Sig." is its p-

value – the probability, if the coefficient were actually zero, of seeing an estimate as large as 
the one that you got.  (Go back and review if you don't remember all of the details of this.) 
 
So see Excel sheet to show how to get predicted wages for different groups.  Can then 
interpret the residual from the regression. 
 

- Statistical significance of coefficient estimates is more complicated for multiple 
regression, we can ask whether a group of variables are jointly significant, which takes a 
more complicated test. 

 
The difference between the overall regression fit and the significance of any particular 
estimate is that a hypothesis test of one particular coefficient tests if that parameter is zero; is 



βi = 0?  This uses the t-statistic 
 

ˆ

ˆ
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se




 and compares it to a Normal or t distribution 

(depending on the degrees of freedom).  The test of the regression significance tests if ALL of 
the slope coefficients are simultaneously zero; if β1 = β2 = β3 = ... = βK = 0.  The latter is much 
more restrictive.  (See Chapter 7 of Stock & Watson.) 
 

The predicted value of y is notated as ŷ , where 
0 1 1 2 2
ˆ ˆ ˆ ˆˆ

k ky x x x        . 
 
Its standard 

error is the standard error of the regression, given by SPSS as "Standard Error of the Estimate." 
 

The residual is 0 1 1 2 2
ˆ ˆ ˆ ˆˆ

k ky y y x x x          .  The residual of, for example, a wage
 

regression can be interpreted as the part of the wage that is not explained by the factors within 
the model. 
 
Residuals are often used in analyses of productivity.  Suppose I am analyzing a chain's stores to 
figure out which are managed best.  I know that there are many reasons for variation in 
revenues and cost so I can get data on those: how many workers are there and their pay, the 
location of the store relative to traffic, the rent paid, any sales or promotions going on, etc.  If I 

run a regression on all of those factors then I get an estimate, 
ŷ , of what profit would have 

been expected, given external factors.  Then the difference represents the unexplained or 
residual amount of variation: some stores would have been expected to be profitable and are 
indeed; some are not living up to potential; some would not have been expected to do so well 
but something is going on so they're doing much better than expected. 

 
 
Why do we always leave out a dummy variable?  Multicollinearity.  (See Chapter 6 of Stock & 
Watson.) 
 

 OLS basic assumptions: 
o The conditional distribution of ui given Xi has a mean of zero.  This is a 

complicated way of saying something very basic: I have no additional 
information outside of the model, which would allow me to make better 
guesses.  It can also be expressed as implying a zero correlation between Xi and 
ui.  We will work up to other methods that incorporate additional information. 

o The X and errors are i.i.d.  This is often not precisely true; on the other hand it 
might be roughly right, and it gives us a place to start. 

o X and errors don't have values that are "too extreme."  This is technical (about 
existence of fourth moments) and broadly true, whenever the X and Y data have 
a limit on the amount of variation, although there might be particular 
circumstances where it is questionable (sometimes in finance). 

 So if these are true then the OLS are unbiased and consistent.  So 
0 0
ˆE    

 
 and 

1 1
ˆE    

 
.  The normal distribution, as the sample gets large, allows us to make 



hypothesis tests about the values of the betas.  In particular, if you look back to the 

"eyeball" data at the beginning, you will recall that a zero value for the slope, 1, is 

important.  It implies no relationship between the variables.  So we will commonly test 

the estimated values of  against a null hypothesis that they are zero. 

 
 

Heteroskedasticity-consistent errors 
 

You can choose to use heteroskedasticity-consistent errors as in the textbook, using hcreg.sps. 
 
 
 
 


