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Panel Data 

A panel of data contains repeated observations of a single economic unit over time.  This might 
be a survey like the CPS where the same person is surveyed each month to investigate changes 
in their labor market status.  There are medical panels that have given annual exams to the 
same people for decades.  Publicly-traded firms that file their annual reports can provide a 
panel of data: revenue and sales for many years at many different firms.  Sometimes data 
covers larger blocks such as states in the US or, if we're looking at macroeconomic 
development, even countries over time. 
 
Other data sets are just cross-sectional, like the March CPS that we're using.  If we put together 
a series of cross-sectional samples that don't follow the same people (so we use the March 
2008, 2007, and 2006 CPS samples) then we have a pooled sample.  A long stream of data on a 
single unit is a time series (for example US Industrial Production or the daily returns on a single 
stock). 
 
In panel data we want to distinguish time from unit effects.  Suppose that you are analyzing 
sales data for a large company's many stores.  You want to figure out which stores are well-
managed.  You know that there are macro trends: some years are good and some are rough, so 
you don't want to indiscriminately reward everybody in good years (when they just got lucky) 
and punish them in bad years (when they got unlucky).  There are also location effects: a store 
with a good location will get more traffic and sell more, regardless.  So you might consider 
subtracting the average sales of a particular location away from current sales, to look at 
deviations from its usual.  After doing this for all of the stores, you could subtract off the 
average deviation at a particular time, too, to account for year effects (if everyone outperforms 
their usual sales by 10% then it might just indicate a good economy).  You would be left with a 
store's "unusual" sales – better or worse than what would have been predicted for a given store 
location in that given year. 
 
A regression takes this even further to use all of our usual "prediction" variables in the list of X, 
and combine these with time and unit fixed effects. 
 
Now the notation begins.  Let the t-subscript index time; let j index the unit.  So any 

observations of y and x must be at a particular date and unit; we have ,t jy  and then the k x-

variables are each ,

k

t jx  (the superscript for which of the x-variables).  So the regression 

equation is 
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where j  (alpha) is the fixed effect for each unit j, t  (gamma) is the time effect, and then the 

error is unique to each unit at each time. 
 
This is actually easy to implement, even though the notation might look formidable.  Just 
create a dummy variable for each time period and another dummy for each unit and put the 
whole slew of dummies into the regression. 
 
So, to take a tiny example, suppose you have 8 store locations over 10 years, 1999-2008.  You 
have data on sales (Y) and advertising spending (X) and want to look at the relationship 
between this simple X and Y.  So the data look like this: 
 

X1999,1 X1999,2 X1999,3 X1999,4 X1999,5 X1999,6 X1999,7 X1999,8 

X2000,1 X2000,2 X2000,3 X2000,4 X2000,5 X2000,6 X2000,7 X2000,8 

X2001,1 X2001,2 X2001,3 X2001,4 X2001,5 X2001,6 X2001,7 X2001,8 

X2002,1 X2002,2 X2002,3 X2002,4 X2002,5 X2002,6 X2002,7 X2002,8 

X2003,1 X2003,2 X2003,3 X2003,4 X2003,5 X2003,6 X2003,7 X2003,8 

X2004,1 X2004,2 X2004,3 X2004,4 X2004,5 X2004,6 X2004,7 X2004,8 

X2005,1 X2005,2 X2005,3 X2005,4 X2005,5 X2005,6 X2005,7 X2005,8 

X2006,1 X2006,2 X2006,3 X2006,4 X2006,5 X2006,6 X2006,7 X2006,8 

X2007,1 X2007,2 X2007,3 X2007,4 X2007,5 X2007,6 X2007,7 X2007,8 

X2008,1 X2008,2 X2008,3 X2008,4 X2008,5 X2008,6 X2008,7 X2008,8 

and similarly for the Y-variables.  To do the regression, create 9 time dummy variables: D2000, 
D2001, D2002, D2003, D2004, D2005, D2006, D2007, and D2008.  Then create 7 unit dummies, 
D2, D3, D4, D5, D6, D7, and D8.  Then regress the Y on X and these 16 dummy variables. 
 
Then the interpretation of the coefficient on the X variable is the amount by which an increase 
in X, above its usual value for that unit and above the usual amount for a given year, would 
increase Y. 
 
One drawback of this type of estimation is that it is not very useful for forecasting, either to try 
to figure out the sales at some new location or what will be sales overall next year – since we 
don't know either the new location's fixed effect (the coefficient on D9 or its alpha) or we don't 
know next year's dummy coefficient (on D2009 or its gamma).  
 
We also cannot put in a variable that varies only on one dimension – for example, we can't add 
any other information about store location that doesn't vary over time, like its distance from 
the other stores or other location information.  All of that variation is swept up in the firm-level 
fixed effect.  Similarly we can't include macro data that doesn't vary across firm locations like 
US GDP since all of that variation is collected into the time dummies. 
 
You can get much fancier; there is a whole econometric literature on panel data estimation 
methods.  But simple fixed effects, put into the same OLS regression that we've become 
accustomed to, can actually get you far. 



 

Binary Dependent Variable Models (Stock & Watson Chapter 9) 
 Sometimes our dependent variable is continuous, like a measurement of a person's 

income; sometimes it is just a "yes" or "no" answer to a simple question.  A "Yes/No" 
answer can be coded as just a 1 (for Yes) or a 0 (a zero for "no").  These zero/one 
variables are called dummy variables or binary variables.  Sometimes the dependent 
variable can have a range of discrete values ("How many children do you have?"  "Which 
train do you take to work?") – in this case we have a discrete variable.  The binary and 
continuous variables can be seen as opposite ends of a spectrum. 

 We want to explore models where our dependent variable takes on discrete values; 
we'll start with just binary variables.  For example, we might want to ask what factors 
influence a person to go to college, to have health insurance, or to look for a job; to 
have a credit card or get a mortgage; what factors influence a firm to go bankrupt; etc. 

 Linear Models such as OLS – NFG.  These imply predicted values of Y that are greater 
than one or less than zero! 

 Interpret our prediction of Y as being the probability that the Y variable will take a value 
of one.  (Note: remember which value codes to one and which to zero – there is no necessary reason, 
for example, for us to code Y=1 if a person has health insurance; we could just as easily define Y=1 if a 
person is uninsured.  The mathematics doesn't change but the interpretation does!) 

 want to somehow "bend" the predicted Y-value so that the prediction of Y never goes 
above 1 or below zero, something like: 
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 differences (Excel sheet: probit_logit_compare.xls) 
 



Clearly the differences are rather small; it is rare that we might have a serious theoretical 
justification for one specification rather than the other. 

 
(Note that the logit function given above has standard error of 

3


 so in the plots I scaled the probit by this factor).  

 Measures of Fit 
o no single measure is adequate; many have been proposed 
o What probability should be used as "hit"?  If the model says there is a 90% 

chance of Y=1, and it truly is equal to one, then that is reasonable to count as a 
correct prediction.  But many measures use 50% as the cutoff.  Tradeoff of false 
positives versus false negatives – loss function might well be asymmetric 

 How to do them in SPSS:  
o for logit: Analyze\Regression\Binary Logistic… 

 SPSS will generate lots of output; you can safely ignore just about 
everything in "Block 0" and concentrate on "Block 1".  The last 

table shows "Variables in the equation" with columns for B, 
S.E., Wald, df, Sig., and Exp(B).  The column for B is the estimate of the 
coefficient and S.E. is its standard error, same as always.  But we don't 
estimate a t-stat but instead a Wald stat (a more complicated formula, 
don't worry) which combines with df to get a Sig. (a p-value).  As usual, if 
the Sig. (p-value) is less than 0.05 then the variable is significant at the 
5% level and you can make confident deductions from it.  For now don't 
worry if you don't remember all of the details about the difference 
between t-tests and Wald tests from your stats classes.  Just look at the 
calculated p-value to figure out which coefficients are significant.  (Tests 
of multiple restrictions, which we did for the OLS model, are more 
complicated here so, again, don't worry about those now.) 

o for probit (Analyze\Regression\Probit…), SPSS wants the dependent 
variable (Response Frequency) and then Total Observed.  For "Total 

Observed" just create a new variable that is always equal to 1 
("Transform\Compute" then create a new variable, ones, which always 



equals 1) and insert that variable.  Leave "Factors" blank and insert the 

explanatory variables as "Covariate(s)" 
 SPSS calculates Probit with numerical iterations so it will sometimes 

return the message  

Convergence Information 
 

  
Number of 
Iterations 

Optimal 
Solution 
Found 

PROBIT 20 No(a) 

a  Parameter estimates did not converge. 
 

 In this case, in the dialog box for "probit" usually you can choose the 
"Options… " button, then under "Criteria" increase the "maximum 

iterations" – as high as 999 if you have a small sample.  The default 
number of iterations is just 20, which is often far too small!  Sometimes, 
however, even 999 isn't enough.  In that case, try a different program or a 
different set of variables.  (Sometimes try the simple OLS version, which can at 
least catch some basic mistakes.  Near-multicollinearity can kill you.) 

 After a successful estimation, SPSS will give you output like this: 

 Convergence Information 
 

  
Number of 
Iterations 

Optimal 
Solution 
Found 

PROBIT 26 Yes 

 The interpretation is analogous to OLS: the "Regression Coeff." is the 
coefficient on that variable, the "Standard Error" is its standard error, and 

the "Coeff./S.E." can be interpreted as a t-statistic.  The remainder of the 
SPSS output can be safely ignored. 

 SPSS is generally lousy at logit/probit regressions of the type we're trying to do.  It's just not 
designed for it.  Stata is much better.  If your final project involves limited dependent variables 
then learn Stata. 

 Details of estimation 
o recall that OLS just gives a convenient formula for finding the values of 
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     .  

If we didn't know the formulas we could just have a computer pick values until it found 
the ones that made that squared term the smallest. 

o similarly a probit or logit coefficient estimates are finding the values of 
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whether the  f  function is a normal c.d.f. or a logit c.d.f. 



o Maximum Likelihood (ML) is a more sophisticated way to find these coefficient 
estimates – better than just guessing randomly. 

o For example the likelihood of any particular value from a normal distribution is the 

p.d.f.,  
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  .  If we have 2 independent observations, 1 2,X X  from a 

distribution that is known to be normally distributed with variance of 1 (to keep the 

math easy) then the joint likelihood is 
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 .  We want to 

find a value of µ that maximixes that function.  This is an ugly function but we could 
note that any value of µ that maximizes the natural log of that function will also 

maximize the function itself (since  ln  is monotonic) so we take logs to get 
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.  Take the derivative with respect to µ 

and set it equal to zero to get    1 2 0X X      so that 
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so the average is also the maximum-likelihood estimator.  A maximum-likelihood 
estimator could be similarly derived in cases where we don't know the variance 
(interestingly, that ML estimator of the standard error divides by n not (n – 1) so it is 
biased but consistent). 

o Maximizing the likelihood of the probit model is one or two steps more complicated but 
not different conceptually.  Having a likelihood function with a first and second 
derivative makes finding a maximum much easier than the random hunt. 

 Properly Interpreting Coefficient Estimates: 
 

Since the slope, 
PrY

X X

 


 
, the change in probability per change in X-variable, is always 

changing, the simple coefficients of the linear model cannot be interpreted as the slope, as 
we did in the OLS model.  (Just like when we added a squared term, the interpretation of 
the slope got more complicated.)   
 
Return to the picture to make this much clearer: 
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The slope at X1 is rather low; the slope at X2 is much steeper. 
 
The effect of the coefficients now interacts with all of the other variables in the model: for 
example the effect of a person's gender on their probability of having health insurance will 
depend on other factors like their age and educational level.  Women are generally less 
likely to have their own insurance than men, but how much less?  Among young people 
with very low education, neither men nor women are very likely to be insured; among older 
people with very high education both are very likely insured.  The biggest difference is 
toward the middle. 
 
For example, very simple logit and probit estimations on the CPS 2008 dataset gives the 
following coefficient estimates (I am suppressing notation on significance since it is not 
important here): 
 

 Logit Probit 

female -0.428 -0.263 

afam 0.220 0.134 

asian 0.252 0.153 

Amindian 0.012 0.007 

Hispanic -0.028 -0.015 

ed_hs 0.987 0.603 

ed_smcol 1.180 0.724 

ed_coll 1.652 1.014 

ed_adv 1.927 1.178 

marrd 0.492 0.307 

divwidsp 0.875 0.541 

union 1.336 0.791 

veteran 0.088 0.052 

immig -0.277 -0.166 

imm2gen -0.067 -0.041 

Intercept -1.303 -0.802 

 



The probability of having health insurance varies for different socioeconomic groups.  We 
can interpret the signs in a straightforward way: the negative coefficients on the "female" 
variable indicate that women are less likely to have health insurance.  Surprisingly, African-
Americans are more likely, along with Asians and Native Americans (although the last is 
not significant).  Hispanics are less likely although this is also not significant. 
 
But how large are these differences?  For example, how much less likely to have health care 
are immigrants?  It depends on the other variables.  Intuitively, if a person is male, highly-
educated, married, and unionized then he's probably insured (being an immigrant would 
them only slightly less so).  So the change in probability associated with immigrant status 
would be low.  At the opposite end, a woman without even a high school diploma, who is 
single, might already be unlikely to be insured.  Immigrant status hardly changes this.  Only 
in the middle will there be a big effect. 
 
We can calculate it straightforwardly, though. 
 
Consider, say, a non-immigrant woman with an advanced degree, whose predicted 
probability of having health insurance is =
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Summing the 3 relevant coefficients (the intercept, female, and an advanced degree) gives 

a logit probability of    1.303 0.428 1.927

1
1.303 0.428 1.927 0.5487

1
f

e
   

    


.  For an 

otherwise-identical immigrant woman (also with an advanced degree) the probability is 
0.4796, so the change in probability is about 7%.   
 
Comparing the probit estimates, we would just change the functional form (using the 
normal cdf instead of the logit function) and find a probability for a non-immigrant woman 
as 0.5447 and the immigrant woman to be 0.4786, with a difference of 6.6%.  These 
estimates from the logit and probit are very close. 
 
Compare the change in probabilities for a married male with an advanced degree who is a 
union member, who is either an immigrant or not.  Now the probability of having insurance 
is, by the logit, 0.9206 for the non-immigrant and 0.8979 for the immigrant, a change of 
just 2.3%.  From the probit the estimated probabilities are 0.9298 for the non-immigrant 
and 0.9045 for the immigrant, a change of 2.5%.  This is because a married male with an 
advanced degree who is a union member is already highly likely to have health insurance, 



so the difference of being an immigrant or not makes only a small change compared with 
the previous example of a female with a high education (but unmarried and not in a union). 
 
The details of this calculation are in an Excel spreadsheet, 
probit_logit_results_fromCPS2008.xls, that you can download. 
 
 

 


