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Preliminary 

We begin with "Know Your Data" and "Show Your Data," to review some of the very 

initial components necessary for data analysis. 

You might want to view online video 1; that covers similar basic information about 

measures of the data center such as mean, median, and mode; also measures of the spread of 

the data such as the standard deviation.  Those notes are the middle part of this lecture.  In 

class we will skip right to Lecture 2, where we apply these basic measures to learn about the 

PUMS dataset. 

The Challenge 

Humans are bad at statistics, we're just not wired to think this way.  Despite – or 

maybe, because of this, statistical thinking is enormously powerful and it can quickly take over 

your life.  Once you begin thinking like a statistician you will begin to see statistical applications 

to even your most mundane activities. 

Not only are humans bad at statistics but statistics seem to interfere with essential 

human feelings such as compassion. 

"A study by Small, Loewenstein, and Slovic (2007) … gave people leaving a psychological 

experiment the opportunity to contribute up to $5 of their earnings to Save the Children. In one condition 

respondents were asked to donate money to feed an identified victim, a seven-year-old African girl 

named Rokia. They contributed more than twice the amount given by a second group asked to donate to 

the same organization working to save millions of Africans from hunger (see Figure 2). A third group was 

asked to donate to Rokia, but was also shown the larger statistical problem (millions in need) shown to 

the second group. Unfortunately, coupling the statistical realities with Rokia’s story significantly reduced 

the contributions to Rokia. 

 

A follow-up experiment by Small et al. initially primed study participants either to feel 

(“Describe your feelings when you hear the word ‘baby,’” and similar items) or to do simple arithmetic 



calculations. Priming analytic thinking (calculation) reduced donations to the identifiable victim (Rokia) 

relative to the feeling-based thinking prime. Yet the two primes had no distinct effect on statistical 

victims, which is symptomatic of the difficulty in generating feelings for such victims." (Paul Slovic, 

Psychic Numbing and Genocide, November 2007, Psychological Science Agenda, 

http://www.apa.org/science/psa/slovic.html) 

Yet although we're not naturally good at statistics, it is very important for us to get 

better.  Consider all of the people who play the lottery or go to a casino, sacrificing their hard-

earned money.  (Statistics questions are often best illustrated by gambling problems, in fact 

the science was pushed along by questions about card games and dice games.) 

Google, one of the world's most highly-regarded companies, famously uses statistics to 

guide even its smallest decisions: 

A designer, Jamie Divine, had picked out a blue that everyone on his team liked. But a product 

manager tested a different color with users and found they were more likely to click on the toolbar if it 

was painted a greener shade. 

As trivial as color choices might seem, clicks are a key part of Google’s revenue stream, and 

anything that enhances clicks means more money. Mr. Divine’s team resisted the greener hue, so Ms. 

Mayer split the difference by choosing a shade halfway between those of the two camps. 

Her decision was diplomatic, but it also amounted to relying on her gut rather than research. 

Since then, she said, she has asked her team to test the 41 gradations between the competing blues to 

see which ones consumers might prefer (Laura M Holson, "Putting a Bolder Face on Google" New York 

Times, Feb 28, 2009). 

Substantial benefits arise once you learn stats.  Specifically, if so many people are bad 

at it then gaining a skill in Statistics gives you a scarce ability – and, since Adam Smith, 

economists have known that scarcity brings value.  (And you might find it fun!) 

Leonard Mlodinow, in his book The Drunkard's Walk, attributes the fact that we humans 

are bad at statistics as due to our need to feel in control of our lives.  We don't like to 

acknowledge that so much of the world is genuinely random and uncontrollable, that many of 

our successes and failures might be due to chance.  When statisticians watch sports games, we 

don't believe sportscasters who discuss "that player just wanted it more" or other un-

observable factors; we just believe that one team or the other got lucky. 

As an example, suppose we were to have 1000 people toss coins in the air – those who 

get "heads" earn a dollar, and the game is repeated 10 times.  It is likely that at least one 

person would flip "heads" all ten times.  That person might start to believe, "Hey, I'm a good 

heads-tosser, I'm really good!"  Somebody else is likely to have tossed "tails" ten times in a row 

– that person would probably be feeling stupid.  But both are just lucky.  And both have the 

same 50% chance of making "heads" on the next toss.  Einstein famously said that he didn't 



like to believe that God played dice with the universe but many people look to the dice to see 

how God plays them. 

Of course we struggle to exert control over our lives and hope that our particular 

choices can determine outcomes.  But, as we begin to look at patterns of events due to many 

people's choices, then statistics become more powerful and more widely applicable.  Consider 

a financial market: each individual trade may be the result of two people each analyzing the 

other's offers, trying to figure out how hard to press for a bargain, working through reams of 

data and making tons of calculations.  But in aggregate, financial markets move randomly – if 

they did not then people could make a lot of money exploiting the patterns.  Statistics help us 

both to see patterns in data that would otherwise see random and also to figure out when the 

patterns we observe are due to random chance.  Statistics is an incredibly powerful tool. 

Economics is a natural fit for statistical analysis since so much of our data is 

quantitative.  Econometrics is the application of statistical analyses to economic problems.  In 

the words of John Tukey, a legendary pioneer, we believe in the importance of "quantitative 

knowledge – a belief that most of the key questions in our world sooner or later demand 

answers to by how much? rather than merely to in which direction?" 

This class 

In my experience, too many statistics classes get off to a slow start because they build 

up gradually and systematically.  That might not sound like a bad thing to you, but the problem 

is that you, the student, get answers to questions that you haven't yet asked.  It can be more 

helpful to jump right in and then, as questions arise, to answer those at the appropriate time.  

So we'll spend a lot of time getting on the computer and actually doing statistics.  

So the class will not always closely follow the textbook, particularly at the beginning.  

We will sometimes go in circles, first giving a simple answer but then returning to the most 

important questions for more study.  The textbook proceeds gradually and systematically so 

you should read that to ensure that you've nailed down all of the details. 

Statistics and econometrics are ultimately used for persuasion.  First we want to 

persuade ourselves whether there is a relationship between some variables.  Next we want to 

persuade other people whether there is such a relationship.  Sometimes statistical theory can 

become quite Platonic in insisting that there is some ideal coefficient or relationship which can 

be discerned.  In this class we will try to keep this sort of discussion to a minimum while 

keeping the "persuasion" rationale uppermost. 



Step One: Know Your Data  

The first step in any examination of data is to know that data – where did it come from?  

Who collected it?  What is the sample of?  What is being measured?  Sometimes you'll find 

people who don't even know the units! 

Economists often get figures in various units: levels, changes, percent changes 

(growth), log changes, annualized versions of each of those.  We need to be careful and keep 

the differences all straight. 

Annualized Data 

At the simplest level, consider if some economic variable is reported to have changed 

by 100 in a particular quarter.  As we make comparisons to previous changes, this is 

straightforward (was it more than 100 last quarter? Less?).  But this has at least two possible 

meanings – only the footnotes or prior experience would tell the difference.  It could imply that 

the actual change was 100, so if the item continued to change at that same rate throughout 

the year, it would change by 400 after 4 quarters.  Or it could imply that the actual change was 

25 and if the item continued to change at that same rate it would be 100 after 4 quarters – this 

is an annualized change.  Most GDP figures are annualized.  But you'd have to read the 

footnotes to make sure. 

This distinction holds for growth rates as well.  But annualizing growth rates is a bit 

more complicated than simply multiplying.  (These are also distinct from year-on-year 

changes.) 

CPI changes are usually reported as monthly changes (not annualized).  GDP growth is 

usually annualized.  So a 0.2% change in the month's CPI and a 2.4% growth in GDP are 

actually the same!  Any data report released by a government statistical agency should 

carefully explain if any changes are annualized or "at an annual rate." 

Seasonal adjustments are even more complicated, where growth rates might be 

reported as relative to previous averages.  We won't yet get into that. 

To annualize growth rates, we start from the original data (for now assume it's 

quarterly): suppose some economic series rose from 1000 in the first quarter to 1005 in the 

second quarter.  This is a 0.5% growth from quarter to quarter (=0.005).  To annualize that 

growth rate, we ask what would be the total growth, if the series continued to grow at that 

same rate for four quarters. 

This would imply that in the third quarter the level would be 1005*(1 + 0.005) 

=1005*(1.005) = 1000*(1.005)*(1.005) = 1000*(1.005)2; in the fourth quarter the level would be 

1000*(1.005) *(1.005)*(1.005) = 1000*(1.005)3; and in the first quarter of next year the level 



would be 1000*(1.005) *(1.005) *(1.005) *(1.005) = 1000*(1.005)4, which is a little more than 

2%.  

This would mean that the annualized rate of growth (for an item reported quarterly) 

would be the final value minus the beginning value, divided by the beginning value, which is  

 
 

4

41000 1.005 1000
1.005 1

1000


  .   

Generalized, this means that quarterly growth is annualized by taking the single-

quarter growth rate, g , and converting this to an annualized rate of  
4

1 1g  . 

If this were monthly then the same sequence of logic would get us to insert a 12 instead 

of a 4 in the preceding formula.  If the item is reported over t  time periods, then the annualized 

rate is  1 1
t

g  .  (Daily rates could be calculated over 250 business days or 360 "banker's 

days" or 365/366 calendar days per year.) 

The year-on-year growth rate is different.  This looks back at the level from one year 

ago and finds the growth rate relative to that level. 

Each method has its weaknesses.  Annualizing needs the assumption that the growth 

could continue at that rate throughout the year – not always true (particularly in finance, where 

a stock could bounce by 1% in a day but it is unlikely to be up by over 250% in a year – there will 

be other large drops).  Year-on-year changes can give a false impression of growth or decline 

after the change has stopped. 

For example, if some item the first quarter of last year was 50, then it jumped to 60 in 

the second quarter, then stayed constant at 60 for the next two quarters, then the year-on-

year change would be calculated as 20% growth even after the series had flattened. 

Sometimes several measures are reported, so that interested readers can get the whole 

story.  For examples, go to the US Economics & Statistics Administration, 

http://www.esa.doc.gov/, and read some of the "Indicators" that are released.   

For example, on July 14, 2011, "The U.S. Census Bureau announced today that advance 

estimates of U.S. retail and food services sales for June, adjusted for seasonal variation and 

holiday and trading-day differences, but not for price changes, were $387.8 billion, an increase 

of 0.1 percent (±0.5%) from the previous month, and 8.1 percent (±0.7%) above June 2010."  

That tells you the level (not annualized), the monthly (not annualized) growth, and the year-

0n-year growth.  The reader is to make her own inferences. 



GDP estimates are annualized, though, so we can read statements like this, from the 

BEA's July 29 release, "Current-dollar GDP ... increased 3.7 percent, or $136.0 billion, in the 

second quarter to a level of $15,003.8 billion. "  The figure, $15 trillion, is scaled to an annual 

GDP figure; we wouldn't multiply by 4.  On the other hand, the monthly retail sales figures 

above are not multiplied by 12. 

So if, for instance, we wanted to know the fraction of GDP that is retail sales, we could 

NOT divide 387.8/15003.8 = 2.6%!  Instead either multiply the retail sales figure by 12 or divide 

the GDP figure by 12.  This would get 31%.  More pertinently, if we hear that government 

stimulus spending added $20 billion, we might want to try to figure out how much this helped 

the economy.  Again, dividing 20/15003.8 = 0.13% (13 bps) but this is wrong!  The $15tn is at an 

annual rate but the $20bn is not, so we've got to get the units consistent.  Either multiply 50 by 

4 or divide 15,003.8 by 4.  (This mistake has been made by even very smart people!) 

So don't make those foolish mistakes and know your data.  If you have a sample, know 

what the sample is taken from.  Often we use government data and just casually assume that, 

since the producers are professionals, that it's exactly what I want.  But "what I want" is not 

always "what is in the definition."  Much government data (we'll be using some of it for this 

class) is based on the Current Population Survey (CPS), which represents the civilian non-

institutional population.  Since it's the main source of data on unemployment rates, it makes 

good sense to exclude people in the military (who have little choice about whether to go to 

work today) or in prison (again, little choice).  But you might forget this, and wonder why there 

are so few soldiers in the data that you're working with <forehead slap!>.   

So know your data.  Even if you're using internal company numbers, you've got to know 

what's being counted – when are sales booked?  Warehouse numbers aren't usually quite the 

same as accounting numbers. 

Show the Data 

A hot field currently is "Data Visualization."  This arises from two basic facts: 1. We're 

drowning in data; and 2. Humans have good eyes. 

We're drowning in data because increasing computing power makes so much more 

available to us.  Companies can now consider giving top executives a "dashboard" where, just 

like a driver can tell how fast the car is travelling right now, the executive can see how much 

profit is being made right now.  Retailers have automated scanners at the cash register and at 

the receiving bay doors; each store can figure out what's selling.  

The data piles up while nobody's looking at it.  An online store might generate data on 

the thousands of clicks simultaneously occurring, but it's probably just spooling onto some 



server's disk drive.  It's just like spy agencies that harvest vast amounts of communications 

(voice, emails, videos, pictures) but then can't analyze them. 

The hoped-for solution is to use our fundamental capacities to see patterns; convert 

machine data to visuals.  Humans have good eyes; we evolved to live in the East African plains, 

watching all around ourselves to find prey or avoid danger.  Modern people read a lot but that 

takes just a small fraction of the eye's nerves; the rest are peripheral vision.  We want to make 

full use of our input devices. 

But putting data into visual form is really tough to do well!  The textbook has many 

examples to help you make better charts.  Read Chapter 3 carefully.  The homework will ask 

you to try your hand at it. 

Histograms 

You might have forgotten about histograms.  A histogram shows the number (or 

fraction) of outcomes which fall into a particular bin.  For example, here is a histogram of 

scores on the final exam for a class that I taught: 

 

This histogram shows a great deal of information; more than just a single number could 

tell.  (Although this histogram, with so many one- or two-step sizes, could be made much 

better.)   

Often a histogram is presented, as above, with blocks but it can just as easily be 

connected lines, like this: 
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The information in the two charts is identical. 

Histograms are a good way of showing how the data vary around the middle.  This 

information about the spread of outcomes around the center is very important to most human 

decisions – we usually don't like risk. 

Note that the choice of horizontal scaling or the number of bins can be fraught. 

For example consider a histogram of a student's grades.  If we leave in the A- and B+ 

grades, we would show a histogram like this: 

 

whereas by collapsing together the grades into A, B, and C categories we would get 

something more intelligible, like this: 
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. 

This shows the central tendency much better – the student has gotten many B grades 

and slightly more A grades than C grades.  The previous histogram had too many categories so 

it was difficult to see a pattern. 

Basic Concepts: Find the Center of the Data 

You need to know how to calculate an average (mean), median, and mode.  After that, 

we will move on to how to calculate measures of the spread of data around the middle, its 

variation. 

Average 

There are a few basic calculations that we start with.  You need to be able to calculate 

an average, sometimes called the mean. 

The average of some values, X, when there are N of them, is the sum of each of the 

values (index them by i) divided by N, so the average of X, sometimes denoted X , is 

 
1

1 N

i

i

X X
N 

  . 

The average value of a sample is NOT NECESSARILY REPRESENTATIVE of what 

actually happens.  There are many jokes about the average statistician who has 2.3 kids.  If 

there are 100 employees at a company, one of whom gets a $100,000 bonus, then the average 

bonus was $1000 – but 99 out of 100 employees didn't get anything. 

A common graphical interpretation of an average value is to interpret the values as 

lengths along which weights are hung on a see-saw.  The average value is where a fulcrum 

would just balance the weights.  Suppose a student is calculating her GPA.  She has an A 

(worth 4.0), an A- (3.67), a B+ (3.33), a C (2.0) and one F (0) [she's having troubles!].  We could 

picture these as weights: 
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The weights "balance" at the average point (where (0 + 2 + 3.33 + 3.67 + 4)/5 = 2.6): 

 

So the "bonus" example would look like this, with one person getting $100,000 while 

the other 99 get nothing: 
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Where there are actually 99 weights at "zero."  But even one person with such a long 

moment arm can still shift the center of gravity away. 

Bottom Line: The average is often a good way of understanding what happens to 

people within some group.  But it is not always a good way. 

Sometimes we calculate a weighted average using some set of weights, w, so 

 
1

n

weighted Average i i

i

X w X


 , where 
1

1
n

i

i

w


 . 

Your GPA, for example, weights the grades by the credits in the course.  Suppose you 

get a B grade (a 3.0 grade) in a 4-credit course and an A- grade (a 3.67 grade) in a 3-credit 

course; you'd calculate GPA by multiplying the grade times the credit, summing this, then 

dividing by the total credits: 

3 4 3.67 3 4 3
3 3.67 3.287

4 3 4 3 4 3
GPA

  
   

  
.   

So in this example the weights are 
1 2

4 3
,

4 3 4 3
w w 

 
. 

When an average is projected forward it is sometimes called the "Expected Value" 

where it is the average value of the predictions (where outcomes with a greater likelihood get 

greater weight).  This nomenclature causes even more problems since, again, the "Expected 

Value" is NOT NECESSARILY REPRESENTATIVE of what actually happens.   
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To simplify some models of Climate Change, if there is a 10% chance of a 10° increase 

in temperature and a 90% chance of no change, then the calculated Expected Value is a 1° 

change – but, again, this value does not actually occur in any of the model forecasts. 

For those of you who have taken calculus, you might find these formulas reminiscent of integrals – good for you!  But we 

won't cover that now.  But if you think of the integral as being just an extreme form o f a summation, then the formula has the same 

format. 

Median 

The median is another measure of what happens to a 'typical' person in a group; like the 

mean it has its limitations.  The median is the value that occurs in the 50th percentile, to the 

person (or occurrence) exactly in the middle.  If there are an odd number of outcomes, 

otherwise it is between the two middle ones. 

In the bonus example above, where one person out of 100 gets a $100,000 bonus, the 

median bonus is $0.  The two statistics combined, that the average is $1000 but the median is 

zero, can provide a better understanding of what is happening.  (Of course, in this very simple 

case, it is easiest to just say that one person got a big bonus and everyone else got nothing.  

But there may be other cases that aren't quite so extreme but still are skewed.) 

Mode 

The mode is the most common outcome; often there may be more than one.  If there 

were a slightly more complicated payroll case, where 49 of the employees got zero bonus, 47 

got $1000, and four got $13,250 each, the mean is the same at $1,000, the median is now equal 

to the mean [review those calculations for yourself!], but the mode is zero.  So that gives us 

additional information beyond the mean or median. 

Spread around the center 

Data distributions differ not only in the location of their center but also in how much 

spread or variation there is around that center point.  For example a new drug might promise 

an average of 25% better results than its competitor, but does this mean that 25% of patients 

improved by 100%, or does this mean that everybody got 25% better?  It's not clear from just 

the central tendency.  But if you're the one who's sick, you want to know. 

This is a familiar concept in economics where we commonly assume that investors 

make a tradeoff between risk and return.  Two hedge funds might both have a record of 10% 

returns, but a record of 9.5%, 10%, and 10.5% is very different from a record of 0%, 10%, and 

20%.  (Actually a record of always winning, no matter what, distinguished Bernie Madoff's 

fund...) 



You might think to just take the average difference of how far observations are from 

the average, but this won't work.   

There's an old joke about the tenant who complains to the super that in winter his 

apartment is 50° and in summer is 90° -- and the super responds, "Why are you complaining?  

The apartment is a comfortable 70° on average!"  (So the tenant replies "I'm complaining because I have 

a squared error loss function!"  If you thought that was funny, you're a stats geek already!) 

The average deviation from the average is always zero.  Write out the formulas to see. 

The average of some N values, 1 2, , NX X X , is given by 
1

1 N

i

i

X X
N 

  .   

So what is the average deviation from the average,  
1

N

i

i

X X


 ?   

We know that  
1 1 1

N N N

i i

i i i

X X X X
  

      and, since X is the same for every 

observation, 
1 1

N N

i

i i

X NX X
 

   , if we substitute back from the definition of X .  So 

 
1

0
N

i

i

X X


  .  We can't re-use the average.  So we want to find some useful, sensible 

function [or functions],  f  , such that  
1

0
N

i

i

f X X


  . 

Standard Deviation 

The most commonly reported measure of spread around the center is the standard 

deviation.  This looks complicated since it squares the deviations and then takes the square 

root, but is actually quite generally useful. 

The formula for the standard deviation is a bit more complicated: 

 2

1

1
( )

n

i

i

s X X
n 

  . 

Before you start to panic, let's go through it slowly.  First we want to see how far each 

observation is from the mean, 

  iX X . 



If we were to just sum up these terms, we'd get nothing – the positive errors and 

negative errors would cancel out.   

So we square the deviations and get  

 2

1

( )
n

i

i

X X


 , 

and then just divide by n to find the average squared error, which is known as the 

variance, which is 

 2 2

1

1
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N

X i

i

X X
N




  . 

The standard deviation is the square root of the variance; 2

X X 

2
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1
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N

i

i

X X
N 

  . 

Of course you're asking why we bother to square all of the parts inside the summation, 

if we're only going to take the square root afterwards.  It's worthwhile to understand the 

rationale since similar questions will re-occur.  The point of the squared errors is that they don't 

cancel out.  The variance can be thought of as the average size of the squared distances from 

the mean.  Then the square root makes this into sensible units.  

The variance and standard deviation of the population divides by N; the variance and 

standard deviation of a sample divide by (N – 1).  This is referred to as a "degrees of freedom 

correction," referring to the fact that a sample, after calculating the mean, has lost one "degree 

of freedom," so the standard deviation has only (N – df) remaining.  You could worry about that 

difference or you could note that, for most datasets with huge N (like the ATUS with almost 

100,000), the difference is too tiny to worry about. 

Our notation generally uses Greek letters to denote population values and English 

letters for sample values, so we have  
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As you learn more statistics you will see that the standard deviation appears quite 

often.  Hopefully you will begin to get used to it. 

We could look at other functions of the distance of the data from the central measure, 

 f  , such that  
1

0
N

i

i

f X X


   -- for example, the mean of the absolute value, 

1

1 N

i

i

X X
N 

 .  By recalling the graphs of these two functions you can begin to appreciate how 

they differ:  

 

So that squaring the difference counts large deviations very much worse than small 

deviations, whereas an absolute deviation does not.  So if you're trying to hit a central target, it 

might well make sense that wider and wider misses should be penalized worse, while tiny 

misses should be hardly counted.   

There is a relationship between the distance measure selected and the central 

parameter.  For example, suppose I want to find some number, Z, that minimizes a measure of 

distance of this number, Z, from each observations.  So I want to minimize 
1

1
( )

N

i

i

f X Z
N 

 .  If 

we were to use the absolute value function then setting Z to the median would minimize the 

distance.  If we use instead the squared function then setting Z to the average would minimize 

the distance.  So there is an important connection between the average and the standard 

deviation, just as there is a connection between the median and the absolute deviation.  (Can you 

think of what distance measure is connected with the mode?)  

If you know calculus, you will understand why, in the age before computer calculations, 

statisticians preferred the squared difference to the absolute value of the difference.  If we look 
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for an estimator that will minimize that distance, then in general in order to minimize 

something we will take its derivative.  But the derivative of the absolute value is undefined at 

zero, while the squared distance has a well-defined derivative. 

Sometimes you will see other measures of variation; the textbook goes through these 

comprehensively.  Note that the Coefficient of Variation, 
s

X
, is the reciprocal of the signal-to-

noise ratio.  This is an important measure when there is no natural or physical measure, for 

example a Likert scale.  If you ask people to rate beers on a scale of 1-10 and find that 

consumers prefer Stone's Ruination Ale to Budweiser by 2 points, you have no idea whether 2 

is a big or a small difference – unless you know how much variation there was in the data (i.e. 

the standard deviation).  On the other hand, if Ruination costs $2 more than Bud, you can 

interpret that even without a standard deviation. 

In finance, this signal/noise ratio is referred to as the Sharpe Ratio, 
fR r




, where R  are 

the average returns on a portfolio and 
fr  is the risk-free rate; the Sharpe Ratio tells the returns 

relative to risk. 

Sometimes we will use "Standardized Data," usually denoted as iZ , where the mean is 

subtracted and then we divide by the standard deviation, so i
i

X X
Z

s


 .  This is interpretable 

as measuring how many standard deviations from the mean is any particular observation.  This 

allows us to abstract from the particular units of the data (meters or feet; Celsius or Fahrenheit; 

whatever) and just think of them as generic numbers. 

Now Do It! 

We'll use data from the Census PUMS, on just people in New York City, to begin 

actually doing statistics using the analysis program called SPSS.  There are further lecture 

notes on each of those topics.  Read those carefully; you'll need them to do the homework 

assignment. 

Overview of PUMS 

We will use data from the Census Bureau's  "Public Use Microdata Survey," or PUMS.  

This is collected in the American Community Survey; just about every ten years since 1790 the 

Census has made a complete enumeration of the US population as required by the 

Constitution. 



We will work on this data using SPSS.  Later I give an overview of the basics of how to 

use that program (there are also videos online). 

The dataset, which is only just information on respondents in the five boroughs of New 

York City, is ready to use in SPSS.  Download it from the class web page (or InYourClass page) 

onto your computer desktop.  It is zipped so you must unzip it.  Remember that if you're in the 

computer lab, just double-clicking on the SPSS file may not automatically start up SPSS; you'll 

get some error code.  So use the Start bar to find SPSS and start the program that way.  Then 

open up your dataset once the program has loaded. 

SPSS has two views of the dataset: Variable View and Data View.  Usually we use the 

Variable View; this lists all of the different information available.  

The dataset has information on 315,771 people in 133,043 households.  If there is a 

family living together in an apartment, say a mother and two kids, then each person has a row 

of data telling about him/her (age, gender, education, etc) but only the head of household (in 

this case, the mother) would have information about the household (how much is spent on 

rent, utilities, etc.).  Depending on what analysis is to be made, the researcher might want to 

look at all the people or all of the households (or subsets of either).  If you look at the "Data 

View" tab you can see the difference.  (Note that the "head of household" is defined by the 

person interviewed so it could be the man or woman, if there are both.) 

The first column of data is a serial number, shared by each person in the household.  

After that you can see that some variables are filled in for every person (age, female, education 

levels) but other variables are only filled in for one person in the household (has_kids, 

kids_under6, kids_under17). 

Many of the variables are coded as "dummy variables" which simply means that they 

have a value of zero or one – a one codes as "yes, true" and a zero is "no, false."  So one of the 

first dummy variables is named "female" and women have a 1 while men have a 0.  (According 

to the government, everybody must be one or the other.) 

There are variables coding people's race/ethnicity, if they were born in the US or a 

foreign country, how much schooling they have, if they are single or married, if they're a 

veteran (and when they served), even what borough they live in and how they commute to 

work.  There is some greater detail about ancestry (where people can write in detail about their 

background).  There is information about their incomes.  For the household there is 

information about the dwelling including when built, number of various rooms, how recently 

they moved, amount paid for fuel, mortgage/rent and fraction of monthly household income 

that is spent on mortgage/rent, etc. 



Basics of government race/ethnicity classification 

The US government asks questions about people's race and ethnicity.  These categories 

are social constructs, which is a fancy way of pointing out that they are not based on hard 

science but on people's own views of themselves (influenced by how people think that other 

people think of them...).  Currently the standard classification asks people separately about 

their "race" and "ethnicity" where people can pick labels from each category in any 

combination. 

The "race" categories that are listed on the government's form are:  "White alone,"  

"Black or African-American alone,"  "American Indian alone," "Alaska Native alone," "American 

Indian and Alaska Native tribes specified; or American Indian or Alaska native, not specified 

and no other race,"  "Asian alone,"  "Native Hawaiian and other Pacific Islander alone,"  "Some 

other race alone," or  "Two or more major race groups."  (Then the supplemental race 

categories offer more detail.) 

These are a peculiar combination of very general (well over 40% of the world's 

population is "Asian") and very specific ("Alaska Native alone") representing a peculiar history 

of popular attitudes in the US.  Only in the 2000 Census did they start to classify people in 

mixed races.  If you were to go back to historical US Censuses from more than a century ago, 

you would find that the category "race" included separate entries for Irish and French and 

various other nationalities.  Stephen J Gould has a fascinating book, The Mismeasure of Man, 

discussing how early scientific classifications of humans tried to "prove" which 

nationalities/races/groups were the smartest. 

Note that "Hispanic" is not "race" but rather ethnicity (includes various other labels such 

as Spanish, Latino, etc.).  So a respondent could choose "Hispanic" and any race category – 

some choose "White," some choose "Black," some might be combined with any other of those 

complicated racial categories. 

What that means, specifically for us reporting statistics on a dataset like this, is that we 

can easily find that, of the 315,771 people in the PUMS dataset who live in the five boroughs of 

New York City,  48.2% report their race as "White alone" and 24.2% as "Black alone," 12.3% 

report as "Asian alone," 12.7% report "some other race alone," 2.2% report multiple races, and 

less than 1% report any Native American category.  Then 24.1% classify their ethnicity as 

Hispanic.  Can we just take the 48.2% White, subtract the 24.1% Hispanic to say that 24.1% are 

"non-Hispanic White" (a category commonly used in other government classifications)?  NO!  

Because that assumes that all of the people who self-classified as Hispanic were also self-

classified as "White only" which is not true.  We would have to create a new variable for non-

Hispanic White to find that proportion.  (Below I'll explain how to do this with SPSS.) 



The Census Bureau gives more information here, 

http://www.census.gov/newsroom/minority_links/minority_links.html 

All of these racial categories makes some people uneasy: is the government 

encouraging racism by recognizing these classifications?  Some other governments choose not 

to collect race data.  But that doesn't mean that there are no differences, only that the 

government doesn't choose to measure any of these differences.  In the US, government 

agencies such as the Census and BLS don't generally collect data on religion (except, for 

historical reasons, Judaism, sometimes considered a race or ethnicity – none of this makes any 

logical sense!). 

About SPSS 

SPSS is a popular and widely-used statistical program.  It is powerful but not too 

overwhelming for a beginner.  SPSS is a bit harder than Excel but gives you a much wider menu 

of statistical analysis.  You don't have to write computer programs like some of the others – 

you can just use drop-down menus and point and click. 

Why learn this particular program?  You should not be monolingual in statistical 

analysis, it is always useful to learn more programs.  The simplest is Excel, which is very widely 

used but has a number of limitations – mainly that, in order to make it easy for ordinary people 

to use, they made it tough for power users.  SPSS is the next step: more powerful but also a bit 

more difficult.  Next is Stata and SAS, which are a bit more powerful but also tougher to use.  

Matlab is great but requires writing programs of computer code.  R is an open-source version 

(we'll use that a little for this class) that is used by many researchers but it requires some work 

to learn.  Python is necessary if you're going to become a real data analyst.  The college has 

SPSS, SAS, and Matlab freely available in all of the computer labs. 

You might be tempted to just use Excel; resist!  Excel doesn't do many of the more 

complex statistical analyses that we'll be learning later in the course.  Make the investment to 

learn a better program; it has a very good cost/benefit ratio. 

The Absolute Beginning 

Start up SPSS.  On any of the computers in the Economics lab (6/150) double-click on 

the "SPSS" logo on the desktop to start up the program.  In other computer labs you might 

have to do a bit more hunting to find SPSS (if there's no link on the desktop, then click the 

"Start" button in the lower left-hand corner, and look at the list of "Programs" to find SPSS).   

Sometimes double-clicking on a file that is associated with SPSS doesn't work!  

Especially if it's zipped.  Same if you try to download a file and automatically start up SPSS.  So 

start SPSS from the Start bar or desktop icon. 



SPSS usually brings up a screen like the one below asking "What would you like 

to do?" which offers some shortcuts.  Just "Cancel" this screen if it appears (later, as you get 

more familiar with the program, you might find those shortcuts more useful). 

 

Load a SPSS Dataset 

When SPSS starts, you will be in the "SPSS Data Editor" which looks like this.  

 

Click on "File" then choose "Open" then "Data…" [not "File/Open Database" – 

that's different]. 



To open the ATUS data, download it from the class webpage onto your computer 

desktop.  Start SPSS.  Then "File \ Open \ Data..." and find "ATUS_2003-

09.sav". (Many datasets are zipped, you first unzip it, then load it.) 

SPSS has two tabs (at the bottom left, in the yellow circle above) to change the way 

you view your data.  The "Data View" tab shows the data the way it would look if it were on an 

Excel sheet.  The "Variable View" tab shows more information on the particular variable – most 

importantly, the "name", "label", and "values".  The Name is how SPSS refers to the 

variable in its menus – these names tend to be inscrutable but you can think of them as 

nicknames.  The Label gives more details, so use the mouse to expand that column so that you 

can read more.  Then values tells you useful information about how the variable is coded.   

Save your Work! 

After you've made changes, you don't want to lose them and have to re-do them.  So 

save your dataset!  ("File" then "Save")  You might want to give it a new name every so 

often, so that you can easily revert back to an old version if you really screw up on some day.   

The computers in the lab wipe the memory clean when you log off so back up your 

data.  Either online (email it to yourself or upload to Google Drive or iCloud or Blackboard) or 

use a USB drive.  Also, figure out how to "zip" your files (right-click on the data file) to save 

yourself some hours of up/download time… 

Getting Basic Statistics 

From either the "Data View" or "Variable View" tab, click "Analyze" then 

"Descriptive Statistics" then "Descriptives":  

 



This will bring up a dialog box asking you which variables you want to get Descriptive 

Statistics on.   

 

Click on the variable you want.  Then click the arrow button in the center box, which will 

move the variables into the column labeled "Variable(s)".  If you make a mistake and 

move the wrong variable, just highlight it in the "Variable(s)" column and use the arrow to 

move it back to the left. 

Then click "OK" and let the computer work. 

If you want a bunch that are all together in the list, click on the first variable that you 

want, then hold down the "Shift" key and click on the last variable -- this highlights them all.  

If you want a bunch that are separated, hold down the "Ctrl" key and click on the ones you 

want.   

Later, once you're feeling confident, click on "Options" to see what's there. 

Create New Variables, like Age-squared or Interaction Age*Dummy, or take logs or 
whatever 

We often create new variables.  One common transformation is taking the log.  This is a 

common procedure to cut down the noise and help to examine growth trends.  Click on 

"Transform" and then "Compute…".  This will bring up a dialog box labeled "Compute 

Variable".   

Type in the new variable name (whatever you want, just remember it!) under "Target 

Variable". (You can click 'Type & Label" if you want to enter more info that can remind 

yourself later.)  For example we'll find the log (natural log) of weekly earnings. 



 

Under "Target Variable" type in the new name, "ln_earn"  or whatever and 

then in "Numeric Expression" you tell it what this new variable is.  You can make any 

complicated or convoluted functions that are necessary for particular analyses; for now find 

the "Function Group" to click on "Arithmetic" and then in the "Functions and 

Special Variables" list below find "Ln".  Double-click it and see that SPSS puts it up into 

the "Numeric Expression" box with a (?) in the argument.  Double-click on the variable, 

weekly earnings (TRERNWA), that you want to use and then hit "OK". 

You'll get a bunch of errors where the program complains about trying to find the log of 

zero, but it still does what you need.  For wages, where many people have wage=0, we often 

use lnwage = ln(wage + 1) which eliminates the problem of ln(0) that returns an error; for most 

other people the distinction between ln(1000) and ln(1001) is tiny.  You can go back and re-do 

your variable if you're feeling a need to be tidy. 

We often recode using logical (Boolean) algebra, so for example to make a variable 

"Hispanic" you'd type "Hispanic" into the Target Variable, then click the "( )" button (see 

the yellow circle in the screenshot below) to get a parenthesis, double-click the variable that 

codes ethnicity so as to get PEHSPNON in the "Numeric Expression" and then add "=1" 

to finish, so getting a relationship that Hispanic is defined as: (PEHSPNON = 1).  SPSS 

understands that whenever that relation is true, it will put in a 1; where false it will put in a 0. 



 

There are other logical buttons (also in the yellow circle above) for putting together 

various logical statements.  The line up and down, |, represents the logical "OR"; the tilde, ~, is 

logical "NOT".   

If you wanted to create a variable for those who report themselves as African-American 

and Hispanic, you'd create the expression (AfricanAmerican = 1) & (Hispanic = 

1).   

If we want more combinations of variables then we create those.  Usually a statistical 

analysis spends a lot of time doing this sort of housekeeping – dull but necessary. 

Re-Coding complicated variables (like race, education, etc) from initial data 

Often we have more complicated variables so we need to be careful in considering the 

"Values" labels.  For instance in the ATUS, as you look at the "Variable View" of your 

dataset, one of the first variables in the dataset has the name "PEEDUCA", which is short for 

"PErson EDUCation Achieved" – the person's education level.  But the coding is strange: under 

"Values" you should see a box with "…" in it – click on that to see the whole list of values and 

what they mean.  You'll see that a "39" means that the person graduated high school; a "43" 

means that they have a Bachelor's degree.  Without that "Values" information you'd have no 

way to know that.  It also means that you must do a bit of work re-coding variables before you 



work with the data.  The variable "TEAGE" (which is the person's age) has numbers like 35, 48, 

19 – just what you'd expect.  These values have a natural interpretation; you don't need a 

codebook for this one!  The variable "TESEX" tells whether the person is male or female – but 

it doesn't use text, it just lists either the number 1 or 2.  We could guess that one of those is 

male and the other female, but we'd have to go back to "Variable View" to look at 

"Values" for "TESEX" to find that a 1 indicates a male and a 2 indicates female. 

Start with "TESEX" to create, instead, a dummy variable (that takes a value of just zero 

or one) called "female" that is equal to one if the person is female and zero if not.  To do this, 

click "Transform" then "Compute…" which will bring up a dialog box.  The "Target 

Variable" is the new variable you are creating; for this case, type in "female".  The 

"Numeric Expression" allows considerable freedom in transforming variables.  For this 

case, we will only need a logical expression: "TESEX = 2".  You can either type in the variable 

name, "TESEX", or find the variable name in the list on the left of the dialog box and click the 

arrow to insert the name.   

Later you might encounter cases where you want more complicated dummy variables 

and want to use logical relations "and" "or" "not" (the symbols "&", "|", "~") or the ">=" or 

multiplication or division.   But in this case, we just need "TESEX = 2" which SPSS interprets 

as telling it to set a value of 1 in each case where that logical expression is true, and a value of 

zero in each case where that expression is false.  If you go to "Data View" and scroll over 

(new variables are all the way on the right) you can check that it looks right. 

Next we'll create the racial variables.  We'll create dummy variables for "white", 

"African-American", "American Indian/Inuit/Hawaiian/Pacific Islander", and "Asian."  We'll lump 

together the people who give multiple identities with those who give a single one (this is 

standard in much empirical work, although it is evolving rapidly).   

So "Tranform/Compute…" and label "Target Variable" as "white" with 

"Numeric Expression" "PTDTRACE=1".  Then "afam" is "( PTDTRACE=2) | 
(PTDTRACE=6) | (PTDTRACE=10) | (PTDTRACE=11) | (PTDTRACE=12) | 

(PTDTRACE=15) | (PTDTRACE=16) | (PTDTRACE=19)" – note the parentheses and 

the "or" symbol.  "Asian" is "( PTDTRACE=4) | (PTDTRACE=8)".  "Amindian" is "( 
PTDTRACE=3) | (PTDTRACE=5) | (PTDTRACE=7) | (PTDTRACE=9) | 

(PTDTRACE=13) | (PTDTRACE=14) | (PTDTRACE=17) | (PTDTRACE=18) | 

(PTDTRACE=20) | (PTDTRACE=21)".  Many of these codings of multiple races could be 

argued – you can make changes if you wish. One reason to learn to do this yourself is to find 

out where minor changes could make a difference in the conclusions.  Do you think that, say, 

average wages are different for these racial categories? 



 

We create a dummy variable for "Hispanic".  Again use "Transform/Compute…" and 

label "Target Variable" as "Hispanic" with "Numeric Expression" of 

"(PEHSPNON = 1)". 

Earlier I mentioned that we can't find non-Hispanic whites by taking the total number of 

"white only" and subtracting "Hispanic" but how can we find the actual number of non-

Hispanic whites?  On the drop-down menu of SPSS find "Transform" then "Compute Variable" 

then in the dialog box, give the new variable (it calls it the "Target Variable") a name (e.g. 

"nonHispWhite") and a Numeric Expression, for example here " (RAC1P = 1) & (HISP = 1) ".  The 

first expression evaluates, for each case, whether the variable, "RAC1P" which is the variable 

coding race, has a value of 1 (which corresponds to the label "White alone").  If it equals 1 then 

the expression is True, which is coded as 1; if RAC1P does not equal 1 then the expression is 

False, coded as zero.  The second expression evaluates if "HISP" equals 1 or not.  The "&" sign in 

the middle evaluates if both expressions are true or not.  When we run this classification, we 

find that 38.9% are non-Hispanic white, a big difference from the previous 24%! 

Create dummy variables for education: a dummy for no high school "ed_nohs", for 

high school but no further "ed_hs", for some college "ed_scol", for a bachelor's degree 

"ed_coll", and for more than a 4-year degree "ed_adv".  "Transform/Compute…", set 

"Target Variable" as "ed_nohs" and "Numeric Expression" as " PEEDUCA <39".  

Then "ed_hs" is " PEEDUCA =39"; "ed_scol" is "( PEEDUCA >39)&( PEEDUCA 

<43)"; "ed_coll" is " PEEDUCA =43"; "ed_adv" is " PEEDUCA >43".  Sometimes we 

distinguish various sorts of "some college" between people who got an Associate's degree 

versus those who took classes but never got any degree. 



Then run "Descriptive Statistics" to make sure everything looks right – your dummy 

variables should have min=0 and max=1, for example! 

Data Sub-Sets 

Often we want to compare groups of people within the dataset to each other, for 

example looking at whether men or women get paid more or commute different or whatever.  

Comparisons are often more useful than just raw numbers because comparisons allow us to 

begin to judge which differences are substantial. 

Do this with "Data" then "Select Cases..." to get a screen like this: 

 

Usually we select cases "If condition is satisfied" so choose that, then 

click on "If..." 

This brings up a dialog box that looks like the "Compute Variable" box from above.  If 

we have already created a dummy variable that has values of only zeroes and ones then you 

can just put that into the "Select Cases" box.  If you want a more complicated set then you can 

build it up using the logical notation that we discussed above.  So suppose you want to look at 

just the subgroup of women between the ages of 18-35.  Then we would enter "(TESEX = 

2) & (TEAGE > 18) & (TEAGE <= 35)".  Click "Continue".  Make sure the output is 

"Filter out unselected cases" (you don't usually want to permanently delete the unselected 

cases!).  Then all of your subsequent analyses will be done for just that subgroup. 



Often an analysis will be more concerned with whether a particular item is done rather 

than how long – for example, when looking at working, whether a person has a second job (so 

time spent working second job is greater than zero) is probably more important than just how 

long they spent working at this second job.  So often the "if..." statement will be of the 

form, "X > 0" for whatever variable, X, you're considering. 

Later on, we will learn some more sophisticated ways of doing it but for now this is 

straightforward and clear.  It will allow you to do the homework assignment. 

Example 

I will do an example to make this a bit clearer.  We will look at the difference in how 

much time male and female college students spend watching TV.  (I hope that for you the 

answer, how much time is wasted on TV, is "zero"!) 

Open the ATUS 2003-2009 dataset.   

First use "Transform \ Compute ..." to create a new variable, tv_time, which 

we set equal to the sum of T120303, watching non-religious TV, and T120304, watching 

religious TV.  (Should we include T120308, playing computer games?) 

Use  "Transform \ Compute ..." to create another variable, educ_time, which is 

the sum of time spent doing things relevant to education, T060101 + T060102 + T060103 + 

T060104 + T060199 + T060301 + T060302 + T060303 + T060399.  (Time spent in class and time 

spent doing homework, mainly.) 

I'll also create "ratio_TV_study" that is the ratio of TV_time to educ_time. 

Run "Analyze \ Descriptive Statistics \ Descriptives ..." to 

check that these seem sensible: 



Descriptive Statistics 
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tv_time 9
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9
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92 
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5

974 

.0

0 

12

0.00 

1.

0450 

3.0082

9 

Valid N 

(listwise) 

5

974 

    

Note that the average for "educ_time" is low because most non-students will report 

zero time spent studying.  All of those zero values returned errors when computing the ratio, 

so this has only 5974 reports of people with more than zero time studying. 

Use "Data \ Select Cases ... " to select only college students (those for whom the 13th 

variable, TESCHLVL, is equal to 2). 

Now to compare men and women I will use "Data \ Split File ... " to split 

into two groups and compare them – the program will do this automatically for all subsequent 

analysis.  

This Split File screen is: 

 



Now when I run the same "Descriptives" as before, this time I get the output 

subdivided: 

Descriptive Statistics 

Edited: sex N Minimum Maximum Mean Std. Deviation 

= "Male" tv_time 2018 .00 860.00 127.1665 138.93259 

educ_time 2018 .00 1051.00 112.6056 186.01012 

ratio_TV_study 784 .00 75.00 .8390 3.02939 

Valid N (listwise) 784     

= "Female" tv_time 3581 .00 1100.00 111.4739 124.86338 

educ_time 3581 .00 1090.00 104.8176 173.84758 

ratio_TV_study 1450 .00 120.00 .9117 4.04470 

Valid N (listwise) 1450     

This shows that male college students watch an average of 127 minutes of TV per day 

and devote an average of 113 minutes to school; females watch 111 minutes of TV and devote 

105 minutes to their studies.  Men watch more TV but also spend a bit more time on school so 

the average ratio of time spent watching TV to time spent on school is .91 for women and .84 

for men. 

Finally I'll show a graph, 



 

Note that there are quite a number of respondents who spent zero time studying or 

zero time watching TV.  We would expect a downward relation since it is like a budget set: the 

more time is spent watching TV, the less is available to do anything else. 

To get this graph, choose "Graphs \ Chart Builder ..." and drag the 

elements to where you want them, like this, 



 

This is the first type of "Scatter/Dot" graph. 

For this graph I removed the split, since it didn't look like there were significant 

differences between men and women in that regard – the same "Data \ Split File 

... " but now "Analyze all cases." 

I can create a histogram of the ratio of time spent watching TV to time spent studying, 

 



But this isn't much use since it's dominated by the few extreme values of people who 

spent 100 or more times as many minutes in TV as studying.  So this histogram, 

 

plots only those with a ratio less than 2. 

(To make this chart, I used "Graphs \ Chart Builder ..." and then chose 

"Bar."  When you put in just one variable on the x-axis it assumes you want a Histogram.) 

Now you can go on to do your own analysis, maybe by race/ethnicity?  Or go back and 

add in video game playing?  Of the people who didn't watch TV, were there a larger fraction of 

men or women?  

Some Shortcuts 

 You can use "Analyze \ Descriptive Statistics \ Explore..." which 

asks you to put in the "Dependent List" which are the variables, whose means you want to 

find, and then the "Factor List" which defines categories, by which the subgroup means 

are found.  So, for example, if you wanted to look at the time sleeping, depending on whether 

there are kids in the house, you could put "Time Sleeping" into the "Dependent List" 

and then "Presence of Household Children" into the "Factor List".  

 You can get fancier if you create your own factors – suppose you wanted to look at 

time sleeping for African-American, Hispanic, Asian, and whites at 5 levels of education each 



(without highschool diploma, with just diploma, with some college, with 4-year degree, with 

advanced degree) – for a total of 4 x 5 = 20 different categories.  So create a new variable that 

takes the values 1 through 20 and carefully code it up for each of those categories.  Then put 

that into "Factor" in "Explore" and let the machine do your work. 

SPSS also has "Analyze \ Compare Means" but we won't get to that yet (although you're 

welcome to explore it on your own!). 

Other Datasets 

The class will use a number of other data sets, which I have provided to you already 

formatted for SPSS.  These are usually assembled by government bureaucrats who love their 

acronyms so they include names like Fed SCF, NHIS, BRFSS, NHANES, WVS, historical PUMS. 

Overview of ATUS data 

We will also use data from the "American Time Use Survey," or ATUS.  This asks 

respondents to carefully list how they spent each hour of their time during the day; it's a 

tremendous resource.  The survey data is collected by the US Bureau of Labor Statistics (BLS), 

a US government agency.  You can find more information about it here, 

http://www.bls.gov/tus/. 

The dataset has information on 112,038 people interviewed from 2003-2010.  This gives 

you a ton of information – we really need to work to get even the simplest information from it. 

The dataset is ready to use in SPSS.  Download it from the class page onto your 

computer.  If it is zipped, then unzip it.  Remember that if you're in the computer lab, just 

double-clicking on the SPSS file may not automatically start up SPSS; you'll get some error 

code.  So use the Start bar to find SPSS and start it that way.  Then open up your dataset once 

the program has loaded. 

The ATUS has data telling how many minutes each person spent on various activities 

during the day.  These are created from detailed logbooks that each person kept, recording 

their activities throughout the day. 

They recorded how much time was spent with family members, with spouse, sleeping, 

watching TV, doing household chores, working, commuting, going to church/religious 

ceremonies, volunteering – there are hundreds of specific data items! 

The NY Times had this graphic showing the different uses of time during the day [here 

http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html is the full interactive chart where 

you can compare the time use patterns of men and women, employed and unemployed, and 

http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html


other groups – a great way to lose an evening! The article is here 

http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2 ] 

 

To use the data effectively, it is helpful to understand the ATUS classification system, 

where additional numbers at the right indicated additional specificity.  The first two digits give 

generic broad categories.  The general classification T05 refers to time spent doing things 

related to work.  T0501 is specific to actual work; T050101 is "Work, main job" then T050102 is 

"Work, other job," T050103 is "Security Procedures related to work," and T050189 is "Working, 

Not Elsewhere Classified," abbreviated as n.e.c. (usually if the final digit is a nine then that 

means that it is a miscellaneous or catch-all category).  Then there are activities that are 

strongly related to work, that a person might not do if they were not working at a particular job 

– like taking a client out to dinner or golfing.  These get their own classification codes, 

T050201, T050202, T050203, T050204, or T050289.  The list continues; there are "Income-

generating hobbies, crafts, and food" and "Job interviewing" and "Job search activities."  These 

have other classifications beginning with T05 to indicate that they are work-related. 

So for instance, to create a variable, "Time Spent Working" that we might label 

"T_work," you would add up T050101, T050102, T050103, T050189, T050201, T050202, 

T050203, T050204, T050289, T050301, T050302, T050303, T050304, T050389,  T050403,  

T050404,  T050405,  T050481,  T050499, and T059999.  You might want to add in "Travel 

related to working" down in T180501.  (No sane human would remember all these codings but 

you'd look at the "Labels" in SPSS and create a new variable.)  It's tedious but not difficult in 

any way. 

Some variables are even more detailed – playing sports is broken down into aerobics, 

baseball, basketball, biking, billiards, boating, bowling, ... all the way to wrestling, yoga, and 

http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2


"Not Elsewhere Classified" for those with really obscure interests.  Then there are similar 

breakdowns for watching those sports.  Most people will have a zero value for most of these 

but they're important for a few people. 

You can imagine that different researchers, exploring different questions, could want 

different aggregates.  So the basic data has a very fine classification which you can add up 

however you want. 

Fed SCF, Survey of Consumer Finances produced by the Federal Reserve 

This survey is only made once every three years; the most recent data is from 2010.  

The survey gives a tremendous amount of information about people's finances: how much 

they have in bank accounts (and how many bank accounts), credit cards, mortgages, student 

loans, auto and other loans, retirement savings, mutual funds, other assets – the whole 

panoply of financial information.  But there's a catch.  As you probably know from class as well 

as from personal experience, wealth is very unequally distributed.  Some people have few 

financial assets at all, not even a bank account.  Many people have only a few basic financial 

instruments: a credit card, some basic loans and a simple bank account.  Then a few wealthy 

people have tremendously complicated portfolios of assets. 

How does a statistical survey deal with this?  By unequal sampling then weighting – all 

of the samples I provide here do this to one degree or another, but it becomes very important 

in the Fed SCF.  The idea is simple: from the perspective of a survey about finance, all people 

with no financial assets look the same – they have "zero" for most answers in the survey.  So a 

single response is an accurate sample for lots and lots of people.  But people with lots of 

financial assets have varied portfolios, so a single response is an accurate sample for only a 

small number of people.  So if I were tasked with finding out about the financial system but 

could only survey 10 people, I might reasonably choose to sample 8 rich people with 

complicated portfolios and maybe 1 middle-class person and 1 poor person.  I would keep in 

mind that the population of people in the country are not 80% rich, of course!  In somewhat 

fancier statistics, I would weight each person, so the poor person would represent tens of 

millions of Americans, the middle-class person might represent more than a hundred million, 

and the rich people would each only represent a few million.  If I wanted to extrapolate from 

the sample to the population, I would have to use these weights. 

Many of the surveys we'll be using in class are weighted, and if you want to use them 

correctly you'll have to do the weighted versions.  I'm skipping that for this class only because I 

think the cost outweighs the benefits for students early in their curriculum. 

Actually using the Fed SCF survey can be difficult because the information is so richly 

detailed.  You might want, say, a family's total debt, but instead get debt on credit card #1, 



card #2, all types of different loans, etc. so you have to add them up yourself.  You have to do a 

bit of preliminary work. 

NHIS National Health Interview Survey 

This dataset has all sorts of medical and healthcare data – who has insurance, how 

often they're sick, doctor visits, pregnancy, weight/height.  In the US many people have health 

insurance provided through their work so the economics of health and economics of insurance 

become tangled together. 

BRFSS, Behavioral Risk Factor Surveillance System Survey 

This dataset has many observations on a wide variety of risky behaviors: smoking, 

drinking, poor eating, flu shots, whether household has a 3-day supply of food and water...  

There is some economic data such as a person's income group. 

NHANES – National Health And Nutrition Examination Survey 

This has even more detail but on a smaller sample than the BRFSS.  On whether people 

have healthy lifestyles: eat veg and fruit, their BMI, whether they smoke (various things), use 

drugs, sex (number of partners) – lots of things that are interesting enough to compensate for 

the dull (!?!?) stats necessary to analyze it. 

There are other common data sources that are easily available online, which you can 

consider as you reflect upon your final project. 

IPUMS  

This is a tremendous data source, that has historical census data for past centuries, 

from  http://www.ipums.org/. Some of the historical questions are weird (they asked if a person 

was "idiotic" or "dumb" – which sounds crazy but used to be scientific terms).  It includes full 

names and addresses from long-ago census data. 

WVS World Values Survey 

This has a bit less economics but still lots of interesting survey data about attitudes of 

people of many issues; the respondents are global from scores of countries over several 

different years.  There is some information about personal income, education and occupation 

so you can see how those correlate with, say, attitudes toward democracy, religiosity, or other 

hot issues. 



Demographic and Health Surveys from USAID 

These give careful data about people in developing countries, to look at, say, how 

economic growth impacts nourishment. 

  



On Correlations: Finding Relationships between Two Variables 

In a case where we have two variables, X and Y, we want to know how or if they are 

related, so we use covariance and correlation. 

Suppose we have a simple case where X has a two-part distribution that depends on 

another variable, Y, where Y is what we call a "dummy" variable: it is either a one or a zero but 

cannot have any other value.  (Dummy variables are often used to encode answers to simple 

"Yes/No" questions where a "Yes" is indicated with a value of one and a "No" corresponds with 

a zero.  Dummy variables are sometimes called "binary" or "logical" variables.)  X might have a 

different mean depending on the value of Y. 

There are millions of examples of different means between two groups.  GPA might be 

considered, with the mean depending on whether the student is a grad or undergrad.  Or 

income might be the variable studied, which changes depending on whether a person has a 

college degree or not.  You might object: but there are lots of other reasons why GPA or 

income could change, not just those two little reasons – of course!  We're not ruling out any 

further complications; we're just working through one at a time. 

In the PUMS data, X might be "wage and salary income in past 12 months" and Y would 

be male or female.  Would you expect that the mean of X for men is greater or less than the 

mean of X for women? 

Run this on SPSS ...  

In a case where X has two distinct distributions depending on whether the dummy 

variable, Y, is zero or one, we might find the sample average for each part, so calculate the 

average when Y is equal to one and the average when Y is zero, which we denote  

    0 10 , 1 ,Y YX Y X Y or X X   .  These are called conditional means since they give the 

mean, conditional on some value. 

In this case the value of 1X Y   is the same as the average of the two variables 

multiplied together, X Y . 
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This is because the value of anything times zero is itself zero, so the term  
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X Y


  

drops out.  While it is easy to see how this additional information is valuable when Y is a 

dummy variable, it is a bit more difficult to see that it is valuable when Y is a continuous 

variable – why might we want to look at the multiplied value, X Y ?   



Use Your Eyes 

We are accustomed to looking at graphs that show values of two variables and trying to 

discern patterns.  Consider these two graphs of financial variables. 

This plots the returns of Hong Kong's Hang Seng index against the returns of 

Singapore's Straits Times index (over the period from Dec 29, 1989 to Sept 1, 2010) 

 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) 

during Jan 2, 1990 – Sept 1, 2010. 



 

You don't have to be a highly-skilled econometrician to see the difference in the 

relationships.  It would seem reasonable to state that the Hong Kong and Singapore stock 

indexes are closely linked; while US stock returns are not closely related to US interest rates. 

We want to ask, how could we measure these relationships?  Since these two graphs 

are rather extreme cases, how can we distinguish cases in the middle?  And then there is one 

farther, even more important question: how can we try to guard against seeing relationships 

where, in fact, none actually exist?  The second question is the big one, which most of this 

course (and much of the discipline of statistics) tries to answer.  But start with the first 

question. 

How can we measure the relationship? 

Correlation measures how/if two variables move together.   

Recall from above that we looked at the average of X Y  when Y was a dummy 

variable taking only the values of zero or one.  Return to the case where Y is not a dummy but 



is a continuous variable just like X.  It is still useful to find the average of X Y  even in the case 

where Y is from a continuous distribution and can take any value, 
1

1 n

i i

i

XY X Y
n 

  . It is a bit 

more useful if we re-write X and Y as differences from their means, so finding: 
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This is the covariance, which is denoted cov(X,Y) or XY. 

A positive covariance shows 
that when X is above its mean, Y 
tends to also be above its mean 
(and vice versa) so either a positive 
number times a positive number 
gives a positive or a negative times 
a negative gives a positive.  

A negative covariance 
shows that when X is above its 
mean, Y tends to be below its mean 
(and vice versa).  So when one is 
positive the other is negative, which 
gives a negative value when 
multiplied. 

 

A bit of math (extra): 
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(a strange case because it makes FOIL look like just FL!)

 

 

Covariance is sometimes scaled by the standard deviations of X and Y in order to 

eliminate problems of measurement units, so the correlation is: 

 
  

1

1 N

i i

i XY
XY

X Y X y

X X Y Y
N 


   



 

 


 or Corr(X,Y), 



where the Greek letter "rho" denotes the correlation coefficient.  With some algebra 

you can show that ρ is always between negative one and positive one; 1 1XY   . 

Two variables will have a perfect correlation if they are identical; they would be 

perfectly inversely correlated if one is just the negative of the other (assets and liabilities, for 

example).  Variables with a correlation close to one (in absolute value) are very similar; 

variables with a low or zero correlation are nearly or completely unrelated. 

Sample covariances and sample correlations 

Just as with the average and standard deviation, we can estimate the covariance and 

correlation between any two variables.  And just as with the sample average, the sample 

covariance and sample correlation will have distributions around their true value. 

Go back to the case of the Hang Seng/Straits Times stock indexes.  We can't just say 

that when one is big, the other is too.  We want to be a bit more precise and say that when one 

is above its mean, the other tends to be above its mean, too.  We might additionally state that, 

when the standardized value of one is high, the other standardized value is also high.  (Recall 

that the standardized value of one variable, X, is ,
i

X i

X

X X
Z

s


 , and the standardized value of 

Y is ,
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Y i

Y

Y Y
Z

s


 .) 

Multiplying the two values together, 
, ,X i Y iZ Z , gives a useful indicator since if both 

values are positive then the multiplication will be positive; if both are negative then the 

multiplication will again be positive.  So if the values of ZX and ZY are perfectly linked together 

then multiplying them together will get a positive number.  On the other hand, if ZX and ZY are 

oppositely related, so whenever one is positive the other is negative, then multiplying them 

together will get a negative number.  And if ZX and ZY are just random and not related to each 

other, then multiplying them will sometimes give a positive and sometimes a negative 

number. 

Sum up these multiplied values and get the (population) correlation,
, ,
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X i Y i
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Z Z
N 
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This can be written as 
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correlation between X and Y is denoted XY ; the sample correlation is XYr .  Again the 



difference is whether you divide by N or (N – 1).  Both correlations are always between -1 and 

+1; 1 1; 1 1r      . 

We often think of drawing lines to summarize relationships; the correlation tells us 

something about how well a line would fit the data.  A correlation with an absolute value near 1 

or -1 tells us that a line (with either positive or negative slope) would fit well; a correlation near 

zero tells us that there is "zero relationship."   

The fact that a negative value can infer a relationship might seem surprising but 

consider for example poker.  Suppose you have figured out that an opponent makes a 

particular gesture when her cards are no good – you can exploit that knowledge, even if it is a 

negative relationship.  In finance, if a fund manager finds two assets that have a strong 

negative correlation, that one has high returns when the other has low returns, then again this 

information can exploited by taking offsetting positions. 

You might commonly see a "covariance matrix" if you were working with many 

variables; the matrix shows the covariance (or correlation) between each pair.  So if you have 4 

variables, named (unimaginatively) X1, X2, X3, and X4, then the covariance matrix would be: 

 X1 X2 X3 X4 

X1 11    

X2 21 22   

X3 31 32 33  

X4 41 42 34 44 

Where the matrix is "lower triangular" because cov(X,Y)=cov(Y,X) [return to the 

formulas if you're not convinced] so we know that the upper entries would be equal to their 

symmetric lower-triangular entry (so the upper triangle is left blank since the entries would be 

redundant).  And we can also show [again, a bit of math to try on your own] that cov(X,X) = 

var(X) so the entries on the main diagonal are the variances. 

If we have a lot of variables (15 or 20) then the covariance matrix can be an important 

way to easily show which ones are tightly related and which ones are not. 

As a practical matter, sometimes perfect (or very high) correlations can be understood 

simply by definition: a survey asking "Do you live in a city?" and "Do you live in the 

countryside?" will get a very high negative correlation between those two questions.  A firm's 

Assets and Liabilities ought to be highly correlated.  But other correlations can be caused by 

the nature of the sampling.  



Higher Moments 

The third moment is usually measured by skewness, which is a common characteristic 

of financial returns: there are lots of small positive values balanced by fewer but larger 

negative values.  Two portfolios could have the same average return and same standard 

deviation, but if one is not symmetric distribution (so has a non-zero skewness) then it would 

be important to understand this risk. 

The fourth moment is kurtosis, which measures how fat the tails are, or how fast the 

probabilities of extreme values die off.  Again a risk manager, for example, would be interested 

in understanding the differences between a distribution with low kurtosis (so lots of small 

changes) versus a distribution with high kurtosis (a few big changes). 

If these measures are not perfectly clear to you, don't get frustrated – it is difficult, but 

it is also very rewarding.  As the Financial Crisis has shown, many top risk managers at name-

brand institutions did not understand the statistical distributions of the risks that they were 

taking on.  They plunged the global economy into recession and chaos because of it. 

These are called "moments" to reflect the origin of the average as being like weights on a lever or "moment arm".  The 

average is the first moment, the variance is the second, skewness is third, kurtosis is fourth, etc.  If you take a class using Calculus 

to go through Probability and Statistics, you will learn moment-generating functions. 

More examples of correlation: 

It is common in finance to want to know the correlation between returns on different 

assets. 

First remember the difference between the returns and the level of an asset or index! 

An investment in multiple assets, with the same return but that are uncorrelated, will 

have the same return but with less overall risk.  We can show this on Excel; first we'll do 

random numbers to show the basic idea and then use specific stocks. 

How can we create normally-distributed random numbers in Excel?  RAND() gives 

random numbers between zero and one; NORMSINV(RAND()) gives normally distributed 

random numbers.  (If you want variables with other distributions, use the inverse of those 

distribution functions.)  Suppose that two variables each have returns given as 2% + a 

normally-distributed random number; this is shown in Excel sheet, lecturenotes3.xls 

With finance data, we use the return not just the price.  This is because we assume that 

investors care about returns per dollar not the level of the stock price. 



Important Questions 

 When we calculate a correlation, what number is "big"?  Will see random 
errors – what amount of evidence can convince us that there is really a correlation? 

 When we calculate conditional means, and find differences between 
groups, what difference is "big"?  What amount of evidence would convince us of a 
difference? 

Example: 

Mazar, Amir, Ariely (2005) "Dishonesty of Honest People" [SSRN-id979648.pdf, 

available online] 

Students solve math problems and report how many, of 20, were solved (offered a 

small reward for success).  Here is a sample question: Which 2 numbers add to 10? You can 

see that finding the answer is tedious but doesn't require advanced mathematical knowledge. 

 

In one setup, the students first threw out the answer sheet and then just said how many 

they'd solved; in the other setup they handed over the sheet to be checked – so it was easier to 

cheat in the first case.  Students who had to hand in the sheet reported solving an average of 

3.1 out of 20 problems in the short time given; students who threw out the sheet reported 4.2.   

Are people more dishonest, when given a chance to be?  Really?  What information do 

we need, to be more confident about our knowledge?  Ariely did another study looking at 

whether wearing counterfeit sunglasses made people more likely to cheat. 

To answer these, we need to think about randomness – in other perceptual problems, 

what would be called noise or blur. 



Learning Outcomes (from CFA exam Study Session 2, Quantitative Methods) 

Students will be able to: 

 calculate and interpret relative frequencies, given a frequency distribution, and describe 
the properties of a dataset presented as a histogram; 

 define, calculate, and interpret measures of central tendency, including the population 
mean, sample mean, median, and mode; 

 define, calculate, and interpret measures of variation, including the population standard 
deviation and the sample standard deviation; 

 define and interpret the covariance and correlation; 

 define a random variable, an outcome, an event, mutually exclusive events, and 
exhaustive events; 

 distinguish between dependent and independent events; 

  



Probability 

Beyond presenting some basic measures such as averages and standard deviations, we 

want to try to understand how much these measures can tell us about the larger world.  How 

likely is it, that we're being fooled, into thinking that there's a relationship when actually none 

exists?  To think through these questions we must consider the logical implications of 

randomness and often use some basic statistical distributions (discrete or continuous). 

Think Like a Statistician 

The basic question that a Statistician must ask is "How likely is it, that I'm being 

fooled?"  Once we accept that the world is random (rather than a manifestation of some god's 

will), we must decide how to make our decisions, knowing that we cannot guarantee that we 

will always be right.  There is some risk that the world will seem to be one way, when actually it 

is not.  The stars are strewn randomly across the sky but some bright ones seem to line up into 

patterns.  So too any data might sometimes line up into patterns. 

Statisticians tend to stand on their heads and ask, suppose there were actually no 

relationship?  (Sometimes they ask, "suppose the conventional wisdom were true?")  This 

statement, about "no relationship," is called the Null Hypothesis, sometimes abbreviated as 

H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We 

know that there is some probability that nature will fool me, that it will seem as though there is 

a relationship when actually there is none.  The statistical test will create a model of a world 

where there is actually no relationship and then ask how likely it is that we could see what we 

actually see, "How likely is it, that I'm being fooled?"  What if there were actually no 

relationship, is there some chance that I could see what I actually see? 

Randomness in Sports 

As an example, consider sports events.  As any sports fan knows, a team or individual 

can get lucky or unlucky.  The baseball World Series, for example, has seven games.  It is 

designed to ensure that, by the end, one team or the other wins.  But will the better team 

always win? 

First make a note about subjectivity: if I am a fan of the team that won, then I will be 

convinced that the better team won; if I'm a fan of the losing team then I'll be certain that the 

better team got unlucky.  But fans of each team might agree, if they discussed the question 

before the Series were played, that luck has a role. 

Will the better team win?  Clearly a seven-game Series means that one team or the 

other will win, even if they are exactly matched (if each had precisely a 50% chance of 



winning).  If two representatives tossed a coin in the air seven times, then one or the other 

would win at least four tosses – maybe even more.  We can use a computer to simulate seven 

coin-tosses by having it pick a random number between zero and one and defining a "win" as 

when the random number is greater than 0.5. 

Or instead of having a computer do it, we could use a bit of statistical theory. 

Some math 

Suppose we start with just one coin-toss or game (baseball uses 7 games to decide a 

champion; football uses just one).  Choose to focus on one team so that we can talk about 

"win" and "loss".  If this team has a probability of winning that is equal to p, then it has a 

probability of losing equal to (1-p).  So even if p, the probability of winning, is equal to 0.6, 

there is still a 40% chance that it could lose a single game.  In fact unless the probability of 

winning is 100%, there is some chance, however remote, that the lesser team will win. 

What about if they played two games?  What are the outcomes?  The probability of a 

team winning both games is p*p = p2.  If the probability were 0.5 then the probability of 

winning twice in a row would be 0.25. 

A table can show this: 

 Win Game 1 {p} Lose Game 1 {1-p} 

Win Game 2 {p} outcome: W,W L,W 

Lose Game 2 {1-p} W,L L,L 

This is a fundamental fact about how probabilities are represented mathematically: if 

the probabilities are not related (i.e. if the tossed coin has no memory) then the probability of 

both events happening is found my multiplying the probabilities of each individual outcome.  

(What if they're not unrelated, you may ask?  What if the first team that wins gets a 

psychological boost in the next so they're more likely to win the second game?  Then the math 

gets more complicated – we'll come back to that question!) 

The math notation for two events, call them A and B, both happening is: 

   Pr PrA and B A B   

The fundamental fact of independence is then represented as: 

     Pr Pr PrA B A B if A and B are independent   



where we use the term "independent" for when there is no relationship between them. 

The probability that a team could lose both games is (1-p)*(1-p) = (1-p)2.  The 

probability that the teams could split the series (each wins just one) is p*(1-p) + (1-p)*p = 2p(1-

p).  There are two ways that each team could win just one game: either the series splits 

(Win,Loss) or (Loss,Win). 

For three games the outcomes become more complicated: now there are 8 

combinations of win and loss:  

(W,W,W) (W,W,L) (W,L,W) (L,W,W) (W,L,L) (L,W,L) (L,L,W) (L,L,L) 

p*p*p p*p*(1-p) p*(1-p)p (1-p)p*p p(1-p)(1-

p) 

(1-p)p(1-

p) 

(1-p)(1-

p)p 

(1-p)(1-

p)(1-p) 

and the probabilities are in the row below.   

The team will win the series in any of the left-most 4 outcomes so its overall probability 

of winning the series is  

 3 23 1p p p   

while its probability of losing the series is 

   
2 3

3 1 1p p p   . 

Clearly if p is 0.5 so that p=(1-p) then the chances of either team winning the three-

game series are equal.  If the probabilities are not equal then the chances are different, but as 

long as there is a probability not equal to one or zero (i.e. no certainty) then there is a chance 

that the worse team could win. 

If you keep on working out the probabilities for longer and longer series you might 

notice that the coefficients and functional forms are right out of Pascal's Triangle.  This is your 

first notice of just how "normal" the Normal Distribution is, in the sense that it jumps into all 

sorts of places where you might not expect it.  The terms of Pascal's Triangle begin (as N 

becomes large) to have a normal distribution!  We'll come back to this again... 

Terms and Definitions 

Some basics: a sample space is the entire list of possible outcomes (can be whole long 

list or even mathematical sets such as real numbers); events are subsets of the sample space.  

Simple event is a single outcome (one dice comes up 6); a compound event is several outcomes 



(both dice come up 6).  Notate an event as A.  The complement of the event is the set of all 

events that are not in A; this is A'. 

The events must be mutually exclusive and exhaustive, so a good deal of the hard 

work in probability is just figuring out how to list all of the events. 

Mutually exclusive means that the events must be clearly defined so that the data 

observed can be classified into just one event.  Exhaustive means that every possible data 

observed must fit into some event.  The "mutually exclusive" part means that probabilities can 

be added up, so that if the probability of rolling a "1" on a dice is 1/6 and the probability of 

rolling a 6 is 1/6, then the probability of rolling either a 1 or 6 is 2/6 = 1/3.  The "exhaustive" part 

of defining the events means that the sum of all the events must equal one. 

For example, suppose we roll two dice.  We might want to think of "die #1 comes up as 

6" as one event [in English, the singular of "dice" is "die" – how morbid gambling can be!].  But 

the other die can have 6 different values without changing the value of the first die.  So a better 

list of events would be the integers from 2 to 12, the sum of the dice values – with the note that 

there are many ways of achieving some of the events (a 7 is a 6 &1 or a 5&2, or 4&3, or 3&4, or 

2&5, or 1&6) while other events have only one path (each die comes up 6 to make 12). 

A sample space is the set of all possible events.  The sum of the probability of all of the 

events in the sample space is equal to one.  There is a 100% chance that something happens 

(provided we've defined the sample space correctly).  So if a lottery brags that there is a 2% 

chance that "you might be a winner!" this is equivalent to stating that there is a 98% chance 

that you'll lose. 

Events have probability; this must lie between zero and one (inclusive); so 0 1P  .  

The probability of all of the events in the sample space must sum to one.  This means that the 

probability of an event and its complement must sum to one:     1P A P A  . 

Probabilities come from empirical results (relative frequency approach) or the classical 

(a priori or postulated) assignment or from subjective beliefs that people have.   

In empirical approach, the Law of Large Numbers is important: as the number of 

identical trials increases, the estimated frequency approaches its theoretical value.  You can try 

flipping coins and seeing how many come up heads (flip a bunch at a time to speed up the process); it 

should be 50%. 

We are often interested in finding the probability of two events both happening; this is 

the "intersection" of two events; the logical "and" relationship; two things both occurring.  In 

the PUMS data we might want to find how many females have a college degree; in poker we 

might care about the chance of an opponent having an ace as one of her hole cards and the 



dealer turning up a king.  We notate the intersection of A and B as A B  and want to find 

 P A B .  In SPSS this is notated with "&". 

The "union" of two events is the logical "or" so it is either of two events occurring; this is 

A B  so we might consider  P A B  or, in SPSS, "|".  In the PUMS data we might want to 

combine people who report themselves as having race "black" with those who report "black – 

white".   In cards,  it is the probability that any of my 3 opponents has a better hand. 

Married people can buy life insurance policies that pay out either when the first person 

dies or after both die – logical and vs or. 

Venn Diagrams (Ballantine) 

 

 

General Law of Addition 

       P A B P A P B P A B      

and so        P A B P A P B P A B      

Mutually Exclusive (Special Law of Addition),  

If A B    then   0P A B   and      P A B P A P B    

Conditional Probability 

 
 

 

P A B
P A B

P B


  if   0P B  .  See Venn Diagram. 

Independent Events 

A is independent of B if and only if    P A B P A  

If we have multiple random variables then we can consider their Joint Distribution: the 

probability associated with each outcome in both sample spaces.  So a coin flip has a simple 

discrete distribution: a 50% chance of heads and a 50% chance of tails.  Flipping 2 coins gives a 

joint distribution: a 25% chance of both coming up heads, a 25% chance of both coming up 

tails, and a 50% chance of getting one head and one tail. 



The probability of multiple independent events is found by multiplying the probabilities 

of each event together.  So the chance of rolling two 6 on two dice is 
1 1 1

6 6 36
  .  The 

probability of getting to the computer lab on the 6th floor of NAC from the first floor, without 

having to walk up a broken escalator, can be found this way too.  Suppose the probability of an 

escalator not working is p ; then the probability of it working is  1 p  and the probability of 

five escalators each working is  
5

1 p .  So even if the probability of a breakdown is small (5%), 

still the probability of having every escalator work is just 

     
5

5 5 5 95
1 5% 95% 0.95 0.7738 77.38%

100

 
      

 
 so this implies that you'd expect to 

walk more than once a week. 

A simple representation of the joint distribution of two coin flips is a table: 

 coin 1 Heads coin 1 Tails 

coin 2 Heads H,H at 25% H,T at 25% 

coin 2 Tails T,H at 25% T,T at 25% 

Where, since the outcomes are independent, we can just multiply the probabilities. 

The Joint Distribution tells the probabilities of all of the different outcomes.  A Marginal 

Distribution answers a slightly different question: given some value of one of the variables, 

what are the probabilities of the other variables? 

When the variables are independent then the marginal distribution does not change 

from the joint distribution.  Consider a simple example of X and Y discrete variables.  X takes 

on values of 1 or 2 with probabilities of 0.6 and 0.4 respectively.  Y takes on values of 1, 2, or 3 

with probabilities of 0.5, 0.3, and 0.2 respectively.  So we can give a table like this: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 

probability 0.3 

(2,1) at 

probability 0.2 

 

Y=2 (30%) (1,2) at 

probability 0.18 

(2,2) at 

probability 0.12 

 

Y=3 (20%) (1,3) at 

probability 0.12 

(2,3) at 

probability 0.08 

 



    

On the assumption that X and Y are independent.  The probabilities in each box are 

found by multiplying the probability of each independent event. 

If instead we had the two variables, A and B, not being independent then we might 

have a table more like this: 

 A=1  A=2   

B=1  (1,1) at 

probability 0.25 

(2,1) at 

probability 0.13 

 

B=2  (1,2) at 

probability 0.23 

(2,2) at 

probability 0.12 

 

B=3  (1,3) at 

probability 0.17 

(2,3) at 

probability 0.1 

 

    

We will examine the differences. 

If we add up the probabilities along either rows or columns then we get the marginal 

probabilities (which we write in the margins, appropriately enough).  Then we'd get: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 

probability 0.3 

(2,1) at 

probability 0.2 

0.5 

Y=2 (30%) (1,2) at 

probability 0.18 

(2,2) at 

probability 0.12 

0.3 

Y=3 (20%) (1,3) at 

probability 0.12 

(2,3) at 

probability 0.08 

0.2 

 0.6 0.4  

Which just re-states our assumption that the variables are independent – and shows 

that, where there is independence, the probability of either variable alone does not depend on 

the value that the other variable takes on.  In other words, knowing X does not give me any 

information about the value that Y will take on, and vice versa. 



If instead we do this for the A,B case we get: 

 A=1  A=2   

B=1  (1,1) at 

probability 0.25 

(2,1) at 

probability 0.13 

0.38 

B=2  (1,2) at 

probability 0.23 

(2,2) at 

probability 0.12 

0.35 

B=3  (1,3) at 

probability 0.17 

(2,3) at 

probability 0.1 

0.27 

 0.65 0.35  

Where we double check that we've done it right by seeing that the sum of either of the 

marginals is equal to one (65% + 35% = 100% and 38% + 35% + 27% = 100%). 

So the marginal distributions sum the various ways that an outcome can happen.  For 

example, we can get A=1 in any of 3 ways: either (1,1), (1,2) or (1,3).  So we add the probabilities 

of each of these outcomes to find the total chance of getting A=1. 

But if we want to understand how A and B are related, it might be more useful to 

consider this as a prediction problem: would knowing the value that A takes on help me guess 

the value of B?  Would knowing the value that B takes on help me guess the value of A? 

These are abstract questions but they have vitally important real-life analogs.  In airport 

security, is the probability that someone is a terrorist independent of whether they are 

Muslim?  Is the probability that someone is pulled out of line for a thorough search 

independent of whether they are Muslim?  (The TSA might have different beliefs than you or me!)  In 

medicine, is the probability that someone gets cancer independent of whether they eat lots of 

vegetables?  In economics, is the probability that someone defaults on their mortgage 

independent of the mortgage originator (Fannie, Freddie, mortgage broker, bank)?  Is the 

probability of the country pulling out of recession independent of whether the Fed raises rates?  

In poker, if my opponent just raised the bid, what is the probability that her cards are better 

than mine? 

For these questions we want to find the conditional distribution: what is the probability 

of some outcome, given a particular value for some other random variable? 

Just from the phrasing of the question, you should be able to see that if the two 

variables are independent then the conditional distribution should not change from the 

marginal distribution – as is the case of X and Y.  Flipping a coin does not help me guess the 



outcome of a roll of the dice.  (Cheering in front of a sports game on TV does not affect the 

outcome, for another example – although plenty of people act as though they don't believe 

that!) 

How do we find the conditional distribution?  Take the value of the joint distribution 

and divide it by the marginal distribution of the relevant variable. 

For example, suppose we want to find the probability of B outcomes, conditional on 

A=1.  Since we know that A=1, there is no longer a 65% probability of A -- it happened.  So we 

divide each joint probability by 0.65 so that the sum will be equal to 1.  So the probabilities are 

now: 

 A=1  A=2   

B=1  (1,1) at 

probability 0.25/.65 

(2,1) at 

probability 0.13 

0.38 

B=2  (1,2) at 

probability 0.23/.65 

(2,2) at 

probability 0.12 

0.35 

B=3  (1,3) at 

probability 0.17/.65 

(2,3) at 

probability 0.1 

0.27 

 0.65/.65 0.35  

so now we get the conditional distribution: 

 A=1  A=2   

B=1  (1,1) @ 0.3846 (2,1) at 

probability 0.13 

0.38 

B=2  (1,2) @ 0.3538 (2,2) at 

probability 0.12 

0.35 

B=3  (1,3) @ 0.2615 (2,3) at 

probability 0.1 

0.27 

  0.35  

We could do the same to find the conditional distribution of B, given that A=2: 

 A=1  A=2   



B=1  (1,1) at 

probability 0.25 

(2,1) @ 0.13/.35 

=.3714 

0.38 

B=2  (1,2) at 

probability 0.23 

(2,2) @ 

0.12/.35 = .3429 

0.35 

B=3  (1,3) at 

probability 0.17 

(2,3) @ 0.1/.35 

= .2857 

0.27 

 0.65   

These conditional probabilities are denoted as  Pr 2B A   for example.  We could find 

the expected value of B given that A equals 2, 2E B A   , just by multiplying the value of B 

by its probability of occurrence, so      2 1 .3714 2 .3429 3 .2857E B A         . 

We could find the conditional probabilities of A given B=1 or given B=2 or given B=3.  In 

those cases we would sum across the rows rather than down the columns. 

More pertinently, we can get crosstabs (on SPSS, "Analyze" then "Descriptive 

Statistics" then "Crosstabs") on two variables, for example the native/foreign born in each 

borough, 

    foreign_born 

Total     0 1 

Boroughs Bronx 33955 15928 49883 

Manhattan 40511 15632 56143 

Staten Is 16074 3971 20045 

Brooklyn 62464 37324 99788 

Queens 48193 41719 89912 

Total 201197 114574 315771 

To get the joint probabilities, we divide the counts by the grand total, 

 native foreign 

Bronx 0.1075 0.0504 

Manhattan 0.1283 0.0495 

Staten Is 0.0509 0.0126 

Brooklyn 0.1978 0.1182 

Queens 0.1526 0.1321 

Then get the marginals: 

 native foreign  



Bronx 0.1075 0.0504 0.1580 

Manhattan 0.1283 0.0495 0.1778 

Staten Is 0.0509 0.0126 0.0635 

Brooklyn 0.1978 0.1182 0.3160 

Queens 0.1526 0.1321 0.2847 

 0.6372 0.3628  

These show that, in NYC, 64% are natives and 36% are foreign-born.  The most 

populous boroughs are Brooklyn and Queens, each with about 30% of the city's population, 

while Manhattan and the Bronx each have about 15% and tiny Staten Island has just over 6%. 

Then the conditional probabilities.  Conditional on being native born, 

 native foreign  

Bronx 0.1688 0.0504 0.1580 

Manhattan 0.2013 0.0495 0.1778 

Staten Is 0.0799 0.0126 0.0635 

Brooklyn 0.3105 0.1182 0.3160 

Queens 0.2395 0.1321 0.2847 

 0.6372 0.3628  

So 31% of the natives live in Brooklyn, 24% in Queens, 20% in Manhattan, 17% in the 

Bronx, and 8% in Staten Island.  So a larger fraction of natives (relative to overall population 

share) is in Manhattan and Staten Island while a much lower fraction of native-born are in 

Queens. 

Conditional on being foreign born, 

 native foreign  

Bronx 0.1075 0.1390 0.1580 

Manhattan 0.1283 0.1364 0.1778 

Staten Is 0.0509 0.0347 0.0635 

Brooklyn 0.1978 0.3258 0.3160 

Queens 0.1526 0.3641 0.2847 

 0.6372 0.3628  

So 36% of immigrants live in Queens (relative to 28% of the population overall), 33% in 

Brooklyn, 14% in the Bronx and Manhattan, and just 3% in Staten Island. 

The relative fractions of native/immigrant by borough (so conditional probabilities) is 

 native foreign  

Bronx 0.6807 0.3193 0.1580 

Manhattan 0.7216 0.2784 0.1778 

Staten Is 0.8019 0.1981 0.0635 



Brooklyn 0.6260 0.3740 0.3160 

Queens 0.5360 0.4640 0.2847 

 0.6372 0.3628  

So the borough with the highest fraction of immigrants is Queens (a 54-46 split), 

followed by Brooklyn, the Bronx, Manhattan, and Staten Island (where natives outnumber 

immigrants by 4-to-1). 

Conditional probabilities can also be calculated with what is called Bayes' Theorem:  

 
   

 

P A B P B
P B A

P A


 . 

This can be understood by recalling the definition of conditional probability, 

 
 

 

P A B
P A B

P B


 , so  

 

 

P A B
P B A

P A


 , that the conditional probability equals the joint 

probability divided by the marginal probability. 

The power of Bayes' Theorem can be understood by thinking about medical testing.  

Suppose a genetic test screens for some disease with 99% accuracy.  Your test comes back 

positive – how worried should you be?   The surprising answer is not 99% worried; in fact often 

you might be more than likely to be healthy!  Suppose that the disease is rare so only 1 person 

in 1000 has it (so 0.1%).  So out of 1000 people, one person has the disease and the test is 99% 

likely to identify that person.  Out of the remaining 999 people, 1% will be misidentified as 

having the disease, so this is 9.99 – call it 10 people.  So eleven people will test positive but only 

one will actually have the disease so the probability of having the disease given that the test 

comes up positive,  P sick test  , is 
   

 

P test sick P sick

P test




= 

0.99 0.001
.099

0.01


 . 

The test is not at all useless – it has brought down an individual's likelihood of being sick 

by orders of magnitude, from one-tenth of one percent to ten percent.  But it's still not nearly 

as accurate as the "99%" label might imply. 

Many healthcare providers don't quite get this and explain it merely as "don't be too 

worried until we do further tests."  But this is one reason why broad-based tests can be very 

expensive and not very helpful.  These tests are much more useful if we first narrow down the 

population of people who might have the disease.  For example home pregnancy tests might 

be 99% accurate but if you randomly selected 1000 people to take the test, you'd find many 

false positives.  Some of those might be guys (!) or women who, for a variety of reasons, are 

not likely to be pregnant.  The test is only useful as one element of a screen that gets 

progressively finer and finer. 



Counting Rules 

If A can occur as N1 events and B can be N2 events then the sample space is 1 2N N  

(visualize a contingency table with N1 rows and N2 columns). 

Factorials: If there are N items then they can be arranged in 

       
1

0

! 1 2 1
N

i

N n n n N i




      ways. 

Permutations: n events that can occur in r items (where order is important) have a total 

of 
 

!

!

n
nPr

n r



 possible outcomes. 

Combinations: n events that can occur in r items (where order is not important) have 

 
!

! !

n
nCr

r n r



 possible outcomes – just the permutation divided by r! to take care of the 

multiple ways of ordering. 

So to apply these, consider computer passwords (see NYTimes article below).   

The article reports: 

Mr. Herley, working with Dinei Florêncio, also at Microsoft Research, 

looked at the password policies of 75 Web sites. ... They reported that the sites 

that allowed relatively weak passwords were busy commercial destinations, 

including PayPal, Amazon.com  and Fidelity Investments. The sites that insisted 

on very complex passwords were mostly government and university sites. What 

accounts for the difference? They suggest that “when the voices that advocate 

for usability are absent or weak, security measures become needlessly 

restrictive.”   

Consider the simple mathematics of why a government or university might want 

complex passwords.  How many permutations are possible if passwords are 6 numerical 

digits?  How many if passwords are 6 alphabetic or numeric characters?  If the 

characters are alphabetic, numeric, and fifteen punctuation characters (, . _ - ? ! @ # $ 

% ^ & * ' ")?  What if passwords are 8 characters?  If each login attempt takes 1/100 of a 

second, how many seconds of "brute-force attack" does it take to access the account on 

average?  If there is a penalty of 10 minutes after 3 unsuccessful login attempts, how 

long would it take to break in?  (Of course, the article notes, if password requirements 

are so arcane that employees put their passwords on a Post-It attached to the monitor, 

then the calculations above are irrelevant.) 



( for fun, here's another example of Joint/Marginal Distributions) 

Tiger Mother Amy Chua in WSJ, Jan 8, 2011 

A lot of people wonder how Chinese parents raise such stereotypically successful kids. They 

wonder what these parents do to produce so many math whizzes and music prodigies, what it's like inside the 

family, and whether they could do it too. Well, I can tell them, because I've done it. Here are some things my 

daughters, Sophia and Louisa, were never allowed to do: 

• attend a sleepover 

• have a playdate 

• be in a school play 

• complain about not being in a school play 

• watch TV or play computer games 

• choose their own extracurricular activities 

• get any grade less than an A 

• not be the No. 1 student in every subject except gym and drama 

• play any instrument other than the piano or violin 

• not play the piano or violin. 

I'm using the term "Chinese mother" loosely. I know some Korean, Indian, Jamaican, Irish and 

Ghanaian parents who qualify too. Conversely, I know some mothers of Chinese heritage, almost always 

born in the West, who are not Chinese mothers, by choice or otherwise. I'm also using the term "Western 

parents" loosely. Western parents come in all varieties. 

So you could go to PUMS and look at first-generation immigrants with parents 

from China, compare with other first-generation kids, see where are the Tiger Moms... 

 

http://online.wsj.com/article/SB10001424052748704111504576059713528698754.html

