# lecturenotes10.r rm(list = ls(all = TRUE)) setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS2010") data1 <-read.spss("cps_m2010_work3.sav", use.value.labels=T, to.data.frame=T) str(data1) data1$WEXP <- as.numeric(data1$WEXP) # restrict to prime-age 25-55 and IncomeWage > 0 and FT worker restrict1 <- ((data1$A_AGE >= 25) & (data1$A_AGE <= 55) & (data1$WSAL_VAL > 0) & ((data1$WEXP == 1) | (data1$WEXP == 2) | (data1$WEXP == 3) )) data2 <- subset(data1, restrict1) str(data2) restrict2 <- as.logical(data2$ed_coll) data3 <- subset(data2, restrict2) Age25 <- data3$WSAL_VAL[data3$A_AGE == 25] Age30 <- data3$WSAL_VAL[data3$A_AGE == 30] Age35 <- data3$WSAL_VAL[data3$A_AGE == 35] Age40 <- data3$WSAL_VAL[data3$A_AGE == 40] Age45 <- data3$WSAL_VAL[data3$A_AGE == 45] Age50 <- data3$WSAL_VAL[data3$A_AGE == 50] plot(density(Age25, bw = "sj")) # can use nonparametric models - this is the "np" package in R # follow along with that "vignette" except with our dataset NN <- length(data3$WSAL_VAL) restrict3 <- as.logical(round(runif(NN,min=0,max=0.75))) data4 <- subset(data3, restrict3) library(np) model_parametric1 <- lm(WSAL_VAL ~ A_AGE + I(A_AGE^2), data = data3) summary(model_parametric1) # note that this is rather computationally intensive! model_nonparametric1 <- npreg(WSAL_VAL ~ A_AGE, regtype = "ll", bwmethod = "cv.aic", gradients = TRUE, data = data3) summary(model_nonparametric1) npsigtest(model_nonparametric1) plot(data3$A_AGE,data3$WSAL_VAL, xlab = "age", ylab = "wage", cex=.1) lines(data3$A_AGE, fitted(model_parametric1), lty = 2, col = "red") lines(data3$A_AGE, fitted(model_nonparametric1), lty = 1, col = "blue") # ------------------ # time series # ------------------ library(lattice) library(latticeExtra) rm(list = ls(all = TRUE)) setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes") dat_empl_NSA = read.csv("empl_data.csv") # Year,Month,CivLabForceNSA,EmplNSA,UnemplNSA # 1948,1,58690,56339,2351 # 1948,2,59247,56440,2807 dat_empl_SA = read.csv("empl_dataSA.csv") # Year,Month,CivLabForSA,Empl SA,Unempl SA # 1948,1,60095,58061,2034 # 1948,2,60524,58196,2328 CivLabForceNSA <- ts(dat_empl_NSA$CivLabForceNSA, frequency = 12, start = c(1948,1)) CivLabForce <- ts(dat_empl_SA$CivLabForSA, frequency = 12, start = c(1948,1)) asTheEconomist(xyplot(CivLabForceNSA, aspect=0.25, ylab="Civilian Labor Force NSA")) asTheEconomist(xyplot(CivLabForce, aspect=0.25, ylab="Civilian Labor Force")) ar1 <- arima(CivLabForceNSA,order=c(1,0,0)) tsdiag(ar1) yr_ahead1 <- predict(ar1, n.ahead=12) ma1 <- arima(CivLabForceNSA,order=c(0,0,1)) tsdiag(ma1) ar2 <- arima(CivLabForce,order=c(1,0,0)) tsdiag(ar2) ma2 <- arima(CivLabForce,order=c(0,0,1)) tsdiag(ma2) CLF_d1 <- diff(CivLabForce) asTheEconomist(xyplot(CLF_d1, aspect=0.25, ylab="diff Civilian Labor Force")) ar3 <- arima(CLF_d1, order=c(1,0,0)) tsdiag(ar3) CLFNSA_d1 <- diff(CivLabForceNSA) asTheEconomist(xyplot(CLFNSA_d1, aspect=0.25, ylab="diff Civilian Labor Force")) ar4 <- arima(CLFNSA_d1, order=c(1,0,0)) tsdiag(ar4)