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Quantile Regression 

If you recall our discussion of heteroskedasticity in things like the Age-Wage relationship, there 

is a well-known tendency for younger workers to have more compressed earnings, which then 

fan out as people get older. 

For example, if we use the 2010 CPS data, we can look at people aged 25-55 who are working 

full time for most of the year and, even if we focus on a single educational group, for example 

those with a 4-year degree, we can see the spread here: 

 

So the median worker saw a steady rise in wage: 30-yr-olds made just over $45,000 while 50-

yr-olds made about $65,000; but those in the 25th percentile went from $35,000 to $40,000 at 

age 30 and 50; those in the 75th percentile went from $65,000 to $100,000. 



One way to model these different results, for different percentiles, is with a quantile regression 

(mostly due to Roger Koenker), which uses a familiar regression framework to explain various 

percentiles. 

In R this couldn’t be easier: just use the “quantreg” package and call the rq() function instead 

of lm().  (Note that it’s rq not qr; if you’ve done linear algebra you’ll recall the QR matrix 

decomposition.) 

p_tiles <- c(0.1, 0.25, 0.5, 0.75, 0.9) 

quantreg1 <- rq(WSAL_VAL ~ A_AGE + I(A_AGE^2) + female + afam + 

asian+ Amindian + Hispanic + immig + imm2gen + ed_hs + ed_collnd 

+ ed_ASvoc + ed_ASacad + ed_coll + ed_adv + union + veteran, 

tau=p_tiles, data=data2) 

summary(quantreg1) 

plot(quantreg1) 

 

Details are in the R file, lecturenotes9.R.  This estimates age-wage profiles like this (again for 

those with a 4-year degree): 

 

Which shows the spread. 

Binary Dependent Variable Models  

(Stock & Watson Chapter 9) 

 Sometimes our dependent variable is continuous, like a measurement of 
a person's income; sometimes it is just a "yes" or "no" answer to a simple question.  A 
"Yes/No" answer can be coded as just a 1 (for Yes) or a 0 (a zero for "no").  These 
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zero/one variables are called dummy variables or binary variables.  Sometimes the 
dependent variable can have a range of discrete values ("How many children do you 
have?"  "Which train do you take to work?") – in this case we have a discrete variable.  
The binary and continuous variables can be seen as opposite ends of a spectrum. 

 We want to explore models where our dependent variable takes on 
discrete values; we'll start with just binary variables.  For example, we might want to 
ask what factors influence a person to go to college, to have health insurance, or to look 
for a job; to have a credit card or get a mortgage; what factors influence a firm to go 
bankrupt; etc. 

 Linear Models such as OLS – NFG.  These imply predicted values of Y 
that are greater than one or less than zero! 

 Interpret our prediction of Y as being the probability that the Y variable 
will take a value of one.  (Note: remember which value codes to one and which to zero – there is no 

necessary reason, for example, for us to code Y=1 if a person has health insurance; we could just as easily 
define Y=1 if a person is uninsured.  The mathematics doesn't change but the interpretation does!) 

 want to somehow "bend" the predicted Y-value so that the prediction of 
Y never goes above 1 or below zero, something like: 
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 differences (Excel sheet: probit_logit_compare.xls) 

Clearly the differences are rather small; it is rare that we might have a serious 

theoretical justification for one specification rather than the other. 

 

(Note that the logit function given above has standard error of 
3


 so in the plots I scaled the probit by this factor). 

 

 Measures of Fit 

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -2 0 2 4

pdf logit

pdf probit

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

CDF

Probit

Logit



o no single measure is adequate; many have been proposed 

o What probability should be used as "hit"?  If the model says there 
is a 90% chance of Y=1, and it truly is equal to one, then that is reasonable to 
count as a correct prediction.  But many measures use 50% as the cutoff.  
Tradeoff of false positives versus false negatives – loss function might well be 
asymmetric 

Probit/Logit in SPSS 

 for logit: Analyze\Regression\Binary Logistic… 

o SPSS will generate lots of output; you can safely ignore just about everything in 
"Block 0" and concentrate on "Block 1".  The last table shows 
"Variables in the equation" with columns for B, S.E., Wald, df, Sig., 
and Exp(B).  The column for B is the estimate of the coefficient and S.E. is its 
standard error, same as always.  But we don't estimate a t-stat but instead a 
Wald stat (a more complicated formula, don't worry) which combines with df to 
get a Sig. (a p-value).  As usual, if the Sig. (p-value) is less than 0.05 then the 
variable is significant at the 5% level and you can make confident deductions 
from it.  For now don't worry if you don't remember all of the details about the 
difference between t-tests and Wald tests from your stats classes.  Just look at 
the calculated p-value to figure out which coefficients are significant.  (Tests of 
multiple restrictions, which we did for the OLS model, are more complicated 
here so, again, don't worry about those now.) 

 for probit (Analyze\Regression\Probit…), SPSS wants the dependent variable 

(Response Frequency) and then Total Observed.  For "Total Observed" 
just create a new variable that is always equal to 1 ("Transform\Compute" then 
create a new variable, ones, which always equals 1) and insert that variable.  Leave 
"Factors" blank and insert the explanatory variables as "Covariate(s)" 

o SPSS calculates Probit with numerical iterations so it will sometimes return the 
message  

Convergence Information 

 

  

Number of 

Iterations 

Optimal 

Solution 

Found 

PROBIT 20 No(a) 

a  Parameter estimates did not converge. 

o In this case, in the dialog box for "probit" usually you can choose the "Options… " 
button, then under "Criteria" increase the "maximum iterations" – as high as 
999 if you have a small sample.  The default number of iterations is just 20, which is 



often far too small!  Sometimes, however, even 999 isn't enough.  In that case, try a 
different program or a different set of variables.  (Sometimes try the simple OLS 
version, which can at least catch some basic mistakes.  Near-multicollinearity can kill 
you.) 

o After a successful estimation, SPSS will give you output like this: 
 

 Convergence Information 

 

  

Number of 

Iterations 

Optimal 

Solution 

Found 

PROBIT 26 Yes 

o The interpretation is analogous to OLS: the "Regression Coeff." is the coefficient 
on that variable, the "Standard Error" is its standard error, and the 

"Coeff./S.E." can be interpreted as a t-statistic.  The remainder of the SPSS output 
can be safely ignored. 

 SPSS is generally lousy at logit/probit regressions of the type we're trying to do.  It's just not 
designed for it.   

Probit/Logit with R 

For a logit estimation, just 

regn_logit1 <- glm(Y ~ X1 + X2, family = binomial, data = data1) 

for a probit estimation 

regn_logit1 <- glm(Y ~ X1 + X2, family = binomial (link = 

'probit'), data = data1) 

Then the estimation results from “summary()” should be familiar. 

Examples in lecturenotes9.R 

 Details of estimation 

 recall that OLS just gives a convenient formula for finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , k     that 

minimize the sum   
2

0 1 1 2 2

1

ˆ ˆ ˆ ˆ
n

i i i k ki

i

Y X X X   


     .  If we didn't know the 

formulas we could just have a computer pick values until it found the ones that made that 
squared term the smallest. 



 similarly a probit or logit coefficient estimates are finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , k     that 

minimize   
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     , whether the  f  function is a 

normal c.d.f. or a logit c.d.f. 

 Maximum Likelihood (ML) is a more sophisticated way to find these coefficient estimates – 
better than just guessing randomly. 

 For example the likelihood of any particular value from a normal distribution is the p.d.f.,  
2
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  .  If we have 2 independent observations, 1 2,X X  from a distribution that is 

known to be normally distributed with variance of 1 (to keep the math easy) then the joint 

likelihood is 
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 .  We want to find a value of µ that maximixes that 

function.  This is an ugly function but we could note that any value of µ that maximizes the 

natural log of that function will also maximize the function itself (since  ln  is monotonic) so 

we take logs to get    
2 2
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.  Take the derivative with 

respect to µ and set it equal to zero to get    1 2 0X X      so that 
 1 2
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 .  

You should be able to see that starting with n  observations would get us 
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   so 

the average is also the maximum-likelihood estimator.  A maximum-likelihood estimator could 
be similarly derived in cases where we don't know the variance (interestingly, that ML estimator 
of the standard error divides by n not (n – 1) so it is biased but consistent). 

 Maximizing the likelihood of the probit model is one or two steps more complicated but not 
different conceptually.  Having a likelihood function with a first and second derivative makes 
finding a maximum much easier than the random hunt. 

Properly Interpreting Coefficient Estimates: 

Since the slope, 
PrY

X X

 


 
, the change in probability per change in X-variable, is 

always changing, the simple coefficients of the linear model cannot be interpreted as the 

slope, as we did in the OLS model.  (Just like when we added a squared term, the 

interpretation of the slope got more complicated.)   

Return to the picture to make this much clearer: 
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The slope at X1 is rather low; the slope at X2 is much steeper. 

The effect of the coefficients now interacts with all of the other variables in the 

model: for example the effect of a person's gender on their probability of having health 

insurance will depend on other factors like their age and educational level.  Women are 

generally less likely to have their own insurance than men, but how much less?  Among 

young people with very low education, neither men nor women are very likely to be 

insured; among older people with very high education both are very likely insured.  The 

biggest difference is toward the middle. 

For example, very simple logit and probit estimations on the NHIS 2009 dataset (R 

program shows this in detail) gives the following coefficient estimates (I am suppressing 

notation on significance since it is not important here): 

 
Logit 
Estimate 

Probit 
Estimate 

(Intercept) -1.519 -0.935 

Age 0.059 0.036 

Age-Squared -0.0006 -0.0003 

Female -0.031 -0.017 

African American -0.576 -0.347 

Native American Indian -0.843 -0.503 

Asian India 0.207 0.129 

Asian Chinese 0.145 0.099 

Asian Phillipines 0.162 0.095 

Asian other -0.181 -0.109 

Race other -0.323 -0.201 

Hispanic -0.607 -0.370 

Mexican 0.097 0.057 

Puerto Rican 0.123 0.077 

Cuban 0.162 0.102 

Dominican -0.533 -0.320 

Educ HS 0.744 0.455 



Educ some college no degree 1.180 0.718 

Educ AS vocational 1.186 0.725 

Educ AS acad 1.501 0.911 

Educ 4-yr degree 1.945 1.171 

Educ Advanced degree 2.261 1.340 

Immigrant -0.717 -0.434 

Married 0.501 0.304 

Divorced/Widowed/Separated -0.160 -0.092 

Veteran -0.443 -0.268 

Region 2 -0.039 -0.023 

Region 3 -0.391 -0.236 

Region 4 -0.312 -0.189 

The probability of having health insurance varies for different socioeconomic 

groups.  We can interpret the signs in a straightforward way: the negative coefficients on 

the "female" variable indicate that women are less likely to have health insurance (not 

significant in either model though).  African-Americans are less likely, along with Hispanics 

and Native Americans.  Educational qualifications are positive and get larger. 

But how large are these differences?  For example, how much less likely to have 

health insurance are immigrants?  It depends on the other variables.  Intuitively, if a person 

is male, highly-educated, and married then he's probably insured (being an immigrant 

would them only slightly less so).  So the change in probability associated with immigrant 

status would be low.  At the opposite end, a woman without a high school diploma, who is 

single, is already be unlikely to be insured.  Immigrant status hardly changes this.  Only in 

the middle will there be a big effect. 

We can calculate it straightforwardly, though. 

Consider, say, a 35-yr-old non-immigrant African-American woman with an 

advanced degree, whose predicted probability of having health insurance is  

= 𝑓

(

 
 

𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝐴𝑔𝑒
2 + 𝛽3𝐹𝑒𝑚𝑎𝑙𝑒 + 𝛽4𝐴𝑓𝑎𝑚 + 𝛽5𝑁𝑎𝑡𝑖𝑣𝑒 +

𝛽6𝐴𝐼𝑛𝑑𝑖𝑎 + 𝛽7𝐴𝐶ℎ𝑖𝑛𝑎 + 𝛽8𝐴𝑃ℎ𝑖𝑙𝑙 + 𝛽9𝐴𝑠𝑖𝑎 + 𝛽10𝑅𝑎𝑐𝑒𝑂𝑡ℎ +
𝛽11𝐻𝑖𝑠𝑝 + 𝛽12𝑀𝑒𝑥 + 𝛽13𝑃𝑅 + 𝛽14𝐶𝑢𝑏𝑎𝑛 + 𝛽15𝐷𝑅 +

𝛽16𝐸𝑑𝐻𝑆 + 𝛽17𝐸𝑑𝑆𝑚𝐶 + 𝛽18𝐸𝑑𝐴𝑆𝑣 + 𝛽19𝐸𝑑𝐴𝑆𝑎 + 𝛽20𝐸𝑑𝐶 + 𝛽21𝐸𝑑𝐴𝑑𝑣
+⋯+ 𝑒 )

 
 

 

=𝑓 (

𝛽0 ∙ 1 + 𝛽1 ∙ 35 + 𝛽2 ∙ 35
2 + 𝛽3 ∙ 1 + 𝛽4 ∙ 1 + 0 + 0

+0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
+𝛽16 ∙ 0 + 𝛽17 ∙ 0 + 𝛽18 ∙ 0 + 𝛽19 ∙ 0 + 𝛽20 ∙ 0 + 𝛽21 ∙ 1

+0…

) 



Summing the relevant coefficients (the intercept, female, and an advanced degree) 

gives a logit probability of  

=𝑓(−1.519 + .059 ∙ 35 − .0006 ∙ 352 − .031 − .576 + 2.261) 

=
1

1+𝑒−(−1.519+.059∙35−.0006∙35
2−.031−.576+2.261)

 

Which is 81.8%.  For an otherwise-identical immigrant woman (also with an 

advanced degree) the probability is 0.687, so the change in probability is about 13.1 

percentage points.   

Comparing the probit estimates, we would just change the functional form and use  

the normal cdf instead of the logit function, so again from: 

=𝑓 (

𝛽0 ∙ 1 + 𝛽1 ∙ 35 + 𝛽2 ∙ 35
2 + 𝛽3 ∙ 1 + 𝛽4 ∙ 1 + 0 + 0

+0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
+𝛽16 ∙ 0 + 𝛽17 ∙ 0 + 𝛽18 ∙ 0 + 𝛽19 ∙ 0 + 𝛽20 ∙ 0 + 𝛽21 ∙ 1

+0…

) 

=𝑓(−1.519 + .059 ∙ 35 − .0006 ∙ 352 − .031 − .576 + 2.261) 

=𝑝𝑛𝑜𝑟𝑚(−1.519 + .059 ∙ 35 − .0006 ∙ 352 − .031 − .576 + 2.261) (in R) 

 and find a probability for a non-immigrant woman as 0..812 and the immigrant 

woman to be 0.674, with a difference of 13.8 percentage points.  These estimates from the 

logit and probit are very close. 

Compare the change in probabilities for a married 50-yr-old white male with an 

advanced degree, who is either an immigrant or not.  Now the probability of having 

insurance is, by the logit, 0.942 for the non-immigrant and 0.887 for the immigrant, a 

change of just 5.4 percentage points.  From the probit the estimated probabilities are 0.951 

for the non-immigrant and 0.889 for the immigrant, a change of 6.2 percentage points.  

This is because a married male with an advanced degree who is a union member is already 

highly likely to have health insurance, so the difference of being an immigrant or not makes 

half of the sized change compared with the previous example. 

The details of this calculation are in an Excel spreadsheet, probit_logit_results.xls, 

that you can download. 

 

 


