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Preliminary 

We begin with "Know Your Data" and "Show Your Data," to review some of the very 
initial components necessary for data analysis. 

The Challenge 

Humans are bad at statistics, we're just not wired to think this way.  Despite – or 
maybe, because of this, statistical thinking is enormously powerful and it can quickly take over 
your life.  Once you begin thinking like a statistician you will begin to see statistical applications 
to even your most mundane activities. 

Not only are humans bad at statistics but statistics seem to interfere with essential 
human feelings such as compassion. 

"A study by Small, Loewenstein, and Slovic (2007) … gave people leaving a psychological 
experiment the opportunity to contribute up to $5 of their earnings to Save the Children. In one condition 
respondents were asked to donate money to feed an identified victim, a seven-year-old African girl 
named Rokia. They contributed more than twice the amount given by a second group asked to donate to 
the same organization working to save millions of Africans from hunger (see Figure 2). A third group was 
asked to donate to Rokia, but was also shown the larger statistical problem (millions in need) shown to 
the second group. Unfortunately, coupling the statistical realities with Rokia’s story significantly reduced 
the contributions to Rokia. 

 

A follow-up experiment by Small et al. initially primed study participants either to feel 
(“Describe your feelings when you hear the word ‘baby,’” and similar items) or to do simple arithmetic 
calculations. Priming analytic thinking (calculation) reduced donations to the identifiable victim (Rokia) 



relative to the feeling-based thinking prime. Yet the two primes had no distinct effect on statistical 
victims, which is symptomatic of the difficulty in generating feelings for such victims." (Paul Slovic, 
Psychic Numbing and Genocide, November 2007, Psychological Science Agenda, 
http://www.apa.org/science/psa/slovic.html) 

Yet although we're not naturally good at statistics, it is very important for us to get 
better.  Consider all of the people who play the lottery or go to a casino, sacrificing their hard-
earned money.  (Statistics questions are often best illustrated by gambling problems, in fact 
the science was pushed along by questions about card games and dice games.) 

Google, one of the world's most highly-regarded companies, famously uses statistics to 
guide even its smallest decisions: 

A designer, Jamie Divine, had picked out a blue that everyone on his team liked. But a product 
manager tested a different color with users and found they were more likely to click on the toolbar if it 
was painted a greener shade. 

As trivial as color choices might seem, clicks are a key part of Google’s revenue stream, and 
anything that enhances clicks means more money. Mr. Divine’s team resisted the greener hue, so Ms. 
Mayer split the difference by choosing a shade halfway between those of the two camps. 

Her decision was diplomatic, but it also amounted to relying on her gut rather than research. 
Since then, she said, she has asked her team to test the 41 gradations between the competing blues to 
see which ones consumers might prefer (Laura M Holson, "Putting a Bolder Face on Google" New York 
Times, Feb 28, 2009). 

Substantial benefits arise once you learn stats.  Specifically, if so many people are bad 
at it then gaining a skill in Statistics gives you a scarce ability – and, since Adam Smith, 
economists have known that scarcity brings value.  (And you might find it fun!) 

Leonard Mlodinow, in his book The Drunkard's Walk, attributes the fact that we humans 
are bad at statistics as due to our need to feel in control of our lives.  We don't like to 
acknowledge that so much of the world is genuinely random and uncontrollable, that many of 
our successes and failures might be due to chance.  When statisticians watch sports games, we 
don't believe sportscasters who discuss "that player just wanted it more" or other un-
observable factors; we just believe that one team or the other got lucky. 

As an example, suppose we were to have 1000 people toss coins in the air – those who 
get "heads" earn a dollar, and the game is repeated 10 times.  It is likely that at least one 
person would flip "heads" all ten times.  That person might start to believe, "Hey, I'm a good 
heads-tosser, I'm really good!"  Somebody else is likely to have tossed "tails" ten times in a row 
– that person would probably be feeling stupid.  But both are just lucky.  And both have the 
same 50% chance of making "heads" on the next toss.  Einstein famously said that he didn't 
like to believe that God played dice with the universe but many people look to the dice to see 
how God plays them. 

Of course we struggle to exert control over our lives and hope that our particular 
choices can determine outcomes.  But, as we begin to look at patterns of events due to many 



people's choices, then statistics become more powerful and more widely applicable.  Consider 
a financial market: each individual trade may be the result of two people each analyzing the 
other's offers, trying to figure out how hard to press for a bargain, working through reams of 
data and making tons of calculations.  But in aggregate, financial markets move randomly – if 
they did not then people could make a lot of money exploiting the patterns.  Statistics help us 
both to see patterns in data that would otherwise see random and also to figure out when the 
patterns we observe are due to random chance.  Statistics is an incredibly powerful tool. 

Economics is a natural fit for statistical analysis since so much of our data is 
quantitative.  Econometrics is the application of statistical analyses to economic problems.  In 
the words of John Tukey, a legendary pioneer, we believe in the importance of "quantitative 
knowledge – a belief that most of the key questions in our world sooner or later demand 
answers to by how much? rather than merely to in which direction?" 

This class 

In my experience, too many statistics classes get off to a slow start because they build 
up gradually and systematically.  That might not sound like a bad thing to you, but the problem 
is that you, the student, get answers to questions that you haven't yet asked.  It can be more 
helpful to jump right in and then, as questions arise, to answer those at the appropriate time.  
So we'll spend a lot of time getting on the computer and actually doing statistics.  

So the class will not always closely follow the textbook, particularly at the beginning.  
We will sometimes go in circles, first giving a simple answer but then returning to the most 
important questions for more study.  The textbook proceeds gradually and systematically so 
you should read that to ensure that you've nailed down all of the details. 

Statistics and econometrics are ultimately used for persuasion.  First we want to 
persuade ourselves whether there is a relationship between some variables.  Next we want to 
persuade other people whether there is such a relationship.  Sometimes statistical theory can 
become quite Platonic in insisting that there is some ideal coefficient or relationship which can 
be discerned.  In this class we will try to keep this sort of discussion to a minimum while 
keeping the "persuasion" rationale uppermost. 

Step One: Know Your Data  

The first step in any examination of data is to know that data – where did it come from?  
Who collected it?  What is the sample of?  What is being measured?  Sometimes you'll find 
people who don't even know the units! 

Economists often get figures in various units: levels, changes, percent changes 
(growth), log changes, annualized versions of each of those.  We need to be careful and keep 
the differences all straight. 

Annualized Data 



At the simplest level, consider if some economic variable is reported to have changed 
by 100 in a particular quarter.  As we make comparisons to previous changes, this is 
straightforward (was it more than 100 last quarter? Less?).  But this has at least two possible 
meanings – only the footnotes or prior experience would tell the difference.  It could imply that 
the actual change was 100, so if the item continued to change at that same rate throughout 
the year, it would change by 400 after 4 quarters.  Or it could imply that the actual change was 
25 and if the item continued to change at that same rate it would be 100 after 4 quarters – this 
is an annualized change.  Most GDP figures are annualized.  But you'd have to read the 
footnotes to make sure. 

This distinction holds for growth rates as well.  But annualizing growth rates is a bit 
more complicated than simply multiplying.  (These are also distinct from year-on-year 
changes.) 

CPI changes are usually reported as monthly changes (not annualized).  GDP growth is 
usually annualized.  So a 0.2% change in the month's CPI and a 2.4% growth in GDP are 
actually the same!  Any data report released by a government statistical agency should 
carefully explain if any changes are annualized or "at an annual rate." 

Seasonal adjustments are even more complicated, where growth rates might be 
reported as relative to previous averages.  We won't yet get into that. 

To annualize growth rates, we start from the original data (for now assume it's 
quarterly): suppose some economic series rose from 1000 in the first quarter to 1005 in the 
second quarter.  This is a 0.5% growth from quarter to quarter (=0.005).  To annualize that 
growth rate, we ask what would be the total growth, if the series continued to grow at that 
same rate for four quarters. 

This would imply that in the third quarter the level would be 1005*(1 + 0.005) 
=1005*(1.005) = 1000*(1.005)*(1.005) = 1000*(1.005)2; in the fourth quarter the level would be 
1000*(1.005) *(1.005)*(1.005) = 1000*(1.005)3; and in the first quarter of next year the level 
would be 1000*(1.005) *(1.005) *(1.005) *(1.005) = 1000*(1.005)4, which is a little more than 
2%.  

This would mean that the annualized rate of growth (for an item reported quarterly) 
would be the final value minus the beginning value, divided by the beginning value, which is  
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  .   

Generalized, this means that quarterly growth is annualized by taking the single-

quarter growth rate, g , and converting this to an annualized rate of  
4

1 1g  . 

If this were monthly then the same sequence of logic would get us to insert a 12 instead 
of a 4 in the preceding formula.  If the item is reported over t  time periods, then the annualized 



rate is  1 1
t

g  .  (Daily rates could be calculated over 250 business days or 360 "banker's 

days" or 365/366 calendar days per year.) 

The year-on-year growth rate is different.  This looks back at the level from one year 
ago and finds the growth rate relative to that level. 

Each method has its weaknesses.  Annualizing needs the assumption that the growth 
could continue at that rate throughout the year – not always true (particularly in finance, where 
a stock could bounce by 1% in a day but it is unlikely to be up by over 250% in a year – there will 
be other large drops).  Year-on-year changes can give a false impression of growth or decline 
after the change has stopped. 

For example, if some item the first quarter of last year was 50, then it jumped to 60 in 
the second quarter, then stayed constant at 60 for the next two quarters, then the year-on-
year change would be calculated as 20% growth even after the series had flattened. 

Sometimes several measures are reported, so that interested readers can get the whole 
story.  For examples, go to the US Economics & Statistics Administration, 
http://www.esa.doc.gov/, and read some of the "Indicators" that are released.   

For example, on July 14, 2011, "The U.S. Census Bureau announced today that advance 
estimates of U.S. retail and food services sales for June, adjusted for seasonal variation and 
holiday and trading-day differences, but not for price changes, were $387.8 billion, an increase 
of 0.1 percent (±0.5%) from the previous month, and 8.1 percent (±0.7%) above June 2010."  
That tells you the level (not annualized), the monthly (not annualized) growth, and the year-
0n-year growth.  The reader is to make her own inferences. 

GDP estimates are annualized, though, so we can read statements like this, from the 
BEA's July 29 release, "Current-dollar GDP ... increased 3.7 percent, or $136.0 billion, in the 
second quarter to a level of $15,003.8 billion. "  The figure, $15 trillion, is scaled to an annual 
GDP figure; we wouldn't multiply by 4.  On the other hand, the monthly retail sales figures 
above are not multiplied by 12. 

So if, for instance, we wanted to know the fraction of GDP that is retail sales, we could 
NOT divide 387.8/15003.8 = 2.6%!  Instead either multiply the retail sales figure by 12 or divide 
the GDP figure by 12.  This would get 31%.  More pertinently, if we hear that government 
stimulus spending added $20 billion, we might want to try to figure out how much this helped 
the economy.  Again, dividing 20/15003.8 = 0.13% (13 bps) but this is wrong!  The $15tn is at an 
annual rate but the $20bn is not, so we've got to get the units consistent.  Either multiply 50 by 
4 or divide 15,003.8 by 4.  (This mistake has been made by even very smart people!) 

So don't make those foolish mistakes and know your data.  If you have a sample, know 
what the sample is taken from.  Often we use government data and just casually assume that, 
since the producers are professionals, that it's exactly what I want.  But "what I want" is not 
always "what is in the definition."  Much government data (we'll be using some of it for this 



class) is based on the Current Population Survey (CPS), which represents the civilian non-
institutional population.  Since it's the main source of data on unemployment rates, it makes 
good sense to exclude people in the military (who have little choice about whether to go to 
work today) or in prison (again, little choice).  But you might forget this, and wonder why there 
are so few soldiers in the data that you're working with <forehead slap!>.   

So know your data.  Even if you're using internal company numbers, you've got to know 
what's being counted – when are sales booked?  Warehouse numbers aren't usually quite the 
same as accounting numbers. 

Show the Data 

A hot field currently is "Data Visualization."  This arises from two basic facts: 1. We're 
drowning in data; and 2. Humans have good eyes. 

We're drowning in data because increasing computing power makes so much more 
available to us.  Companies can now consider giving top executives a "dashboard" where, just 
like a driver can tell how fast the car is travelling right now, the executive can see how much 
profit is being made right now.  Retailers have automated scanners at the cash register and at 
the receiving bay doors; each store can figure out what's selling.  

The data piles up while nobody's looking at it.  An online store might generate data on 
the thousands of clicks simultaneously occurring, but it's probably just spooling onto some 
server's disk drive.  It's just like spy agencies that harvest vast amounts of communications 
(voice, emails, videos, pictures) but then can't analyze them. 

The hoped-for solution is to use our fundamental capacities to see patterns; convert 
machine data to visuals.  Humans have good eyes; we evolved to live in the East African plains, 
watching all around ourselves to find prey or avoid danger.  Modern people read a lot but that 
takes just a small fraction of the eye's nerves; the rest are peripheral vision.  We want to make 
full use of our input devices. 

But putting data into visual form is really tough to do well!  The textbook has many 
examples to help you make better charts.  Read Chapter 3 carefully.  The homework will ask 
you to try your hand at it. 

Histograms 

You might have forgotten about histograms.  A histogram shows the number (or 
fraction) of outcomes which fall into a particular bin.  For example, here is a histogram of 
scores on the final exam for a class that I taught: 



 

This histogram shows a great deal of information; more than just a single number could 
tell.  (Although this histogram, with so many one- or two-step sizes, could be made much 
better.)   

Often a histogram is presented, as above, with blocks but it can just as easily be 
connected lines, like this: 

 

The information in the two charts is identical. 

Histograms are a good way of showing how the data vary around the middle.  This 
information about the spread of outcomes around the center is very important to most human 
decisions – we usually don't like risk. 
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Note that the choice of horizontal scaling or the number of bins can be fraught. 

For example consider a histogram of a student's grades.  If we leave in the A- and B+ 
grades, we would show a histogram like this: 

 

whereas by collapsing together the grades into A, B, and C categories we would get 
something more intelligible, like this: 

. 

This shows the central tendency much better – the student has gotten many B grades 
and slightly more A grades than C grades.  The previous histogram had too many categories so 
it was difficult to see a pattern. 

Basic Concepts: Find the Center of the Data 

You need to know how to calculate an average (mean), median, and mode.  After that, 
we will move on to how to calculate measures of the spread of data around the middle, its 
variation. 

Average 

There are a few basic calculations that we start with.  You need to be able to calculate 
an average, sometimes called the mean. 

The average of some values, X, when there are N of them, is the sum of each of the 

values (index them by i) divided by N, so the average of X, sometimes denoted X , is 
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The average value of a sample is NOT NECESSARILY REPRESENTATIVE of what 
actually happens.  There are many jokes about the average statistician who has 2.3 kids.  If 
there are 100 employees at a company, one of whom gets a $100,000 bonus, then the average 
bonus was $1000 – but 99 out of 100 employees didn't get anything. 

A common graphical interpretation of an average value is to interpret the values as 
lengths along which weights are hung on a see-saw.  The average value is where a fulcrum 
would just balance the weights.  Suppose a student is calculating her GPA.  She has an A 
(worth 4.0), an A- (3.67), a B+ (3.33), a C (2.0) and one F (0) [she's having troubles!].  We could 
picture these as weights: 

 

The weights "balance" at the average point (where (0 + 2 + 3.33 + 3.67 + 4)/5 = 2.6): 
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So the "bonus" example would look like this, with one person getting $100,000 while 
the other 99 get nothing: 

 

Where there are actually 99 weights at "zero."  But even one person with such a long 
moment arm can still shift the center of gravity away. 

Bottom Line: The average is often a good way of understanding what happens to 
people within some group.  But it is not always a good way. 

Sometimes we calculate a weighted average using some set of weights, w, so 
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 . 

Your GPA, for example, weights the grades by the credits in the course.  Suppose you 
get a B grade (a 3.0 grade) in a 4-credit course and an A- grade (a 3.67 grade) in a 3-credit 
course; you'd calculate GPA by multiplying the grade times the credit, summing this, then 
dividing by the total credits: 

3 4 3.67 3 4 3
3 3.67 3.287

4 3 4 3 4 3
GPA

  
   

  
.   

So in this example the weights are 
1 2

4 3
,

4 3 4 3
w w 

 
. 

When an average is projected forward it is sometimes called the "Expected Value" 
where it is the average value of the predictions (where outcomes with a greater likelihood get 
greater weight).  This nomenclature causes even more problems since, again, the "Expected 
Value" is NOT NECESSARILY REPRESENTATIVE of what actually happens.   
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To simplify some models of Climate Change, if there is a 10% chance of a 10° increase 
in temperature and a 90% chance of no change, then the calculated Expected Value is a 1° 
change – but, again, this value does not actually occur in any of the model forecasts. 

For those of you who have taken calculus, you might find these formulas reminiscent of integrals – good for you!  But we 
won't cover that now.  But if you think of the integral as being just an extreme form o f a summation, then the formula has the same 
format. 

Median 

The median is another measure of what happens to a 'typical' person in a group; like the 
mean it has its limitations.  The median is the value that occurs in the 50th percentile, to the 
person (or occurrence) exactly in the middle.  If there are an odd number of outcomes, 
otherwise it is between the two middle ones. 

In the bonus example above, where one person out of 100 gets a $100,000 bonus, the 
median bonus is $0.  The two statistics combined, that the average is $1000 but the median is 
zero, can provide a better understanding of what is happening.  (Of course, in this very simple 
case, it is easiest to just say that one person got a big bonus and everyone else got nothing.  
But there may be other cases that aren't quite so extreme but still are skewed.) 

Mode 

The mode is the most common outcome; often there may be more than one.  If there 
were a slightly more complicated payroll case, where 49 of the employees got zero bonus, 47 
got $1000, and four got $13,250 each, the mean is the same at $1,000, the median is now equal 
to the mean [review those calculations for yourself!], but the mode is zero.  So that gives us 
additional information beyond the mean or median. 

Spread around the center 

Data distributions differ not only in the location of their center but also in how much 
spread or variation there is around that center point.  For example a new drug might promise 
an average of 25% better results than its competitor, but does this mean that 25% of patients 
improved by 100%, or does this mean that everybody got 25% better?  It's not clear from just 
the central tendency.  But if you're the one who's sick, you want to know. 

This is a familiar concept in economics where we commonly assume that investors 
make a tradeoff between risk and return.  Two hedge funds might both have a record of 10% 
returns, but a record of 9.5%, 10%, and 10.5% is very different from a record of 0%, 10%, and 
20%.  (Actually a record of always winning, no matter what, distinguished Bernie Madoff's 
fund...) 

You might think to just take the average difference of how far observations are from 
the average, but this won't work.   



There's an old joke about the tenant who complains to the super that in winter his 
apartment is 50° and in summer is 90° -- and the super responds, "Why are you complaining?  
The apartment is a comfortable 70° on average!"  (So the tenant replies "I'm complaining because I have 

a squared error loss function!"  If you thought that was funny, you're a stats geek already!) 

The average deviation from the average is always zero.  Write out the formulas to see. 

The average of some N values, 1 2, , NX X X , is given by 
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  .   

So what is the average deviation from the average,  
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We know that  
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observation, 
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   , if we substitute back from the definition of X .  So 
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  .  We can't re-use the average.  So we want to find some useful, sensible 

function [or functions],  f  , such that  
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  . 

Standard Deviation 

The most commonly reported measure of spread around the center is the standard 
deviation.  This looks complicated since it squares the deviations and then takes the square 
root, but is actually quite generally useful. 

The formula for the standard deviation is a bit more complicated: 

 2

1

1
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s X X
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  . 

Before you start to panic, let's go through it slowly.  First we want to see how far each 
observation is from the mean, 

  iX X . 

If we were to just sum up these terms, we'd get nothing – the positive errors and 
negative errors would cancel out.   

So we square the deviations and get  
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and then just divide by n to find the average squared error, which is known as the 
variance, which is 
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The standard deviation is the square root of the variance; 2

X X 
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  . 

Of course you're asking why we bother to square all of the parts inside the summation, 
if we're only going to take the square root afterwards.  It's worthwhile to understand the 
rationale since similar questions will re-occur.  The point of the squared errors is that they don't 
cancel out.  The variance can be thought of as the average size of the squared distances from 
the mean.  Then the square root makes this into sensible units.  

The variance and standard deviation of the population divides by N; the variance and 
standard deviation of a sample divide by (N – 1).  This is referred to as a "degrees of freedom 
correction," referring to the fact that a sample, after calculating the mean, has lost one "degree 
of freedom," so the standard deviation has only (N – df) remaining.  You could worry about that 
difference or you could note that, for most datasets with huge N (like the ATUS with almost 
100,000), the difference is too tiny to worry about. 

Our notation generally uses Greek letters to denote population values and English 
letters for sample values, so we have  

2 2

1

1
( )

1

N

X i

i

s X X
N 

 



 and 

2

1

1
( )

1

N

i

i

s X X
N 

 



. 

As you learn more statistics you will see that the standard deviation appears quite 
often.  Hopefully you will begin to get used to it. 

We could look at other functions of the distance of the data from the central measure, 

 f  , such that  
1

0
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i

f X X


   -- for example, the mean of the absolute value, 
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 .  By recalling the graphs of these two functions you can begin to appreciate how 

they differ:  

 

So that squaring the difference counts large deviations very much worse than small 
deviations, whereas an absolute deviation does not.  So if you're trying to hit a central target, it 
might well make sense that wider and wider misses should be penalized worse, while tiny 
misses should be hardly counted.   

There is a relationship between the distance measure selected and the central 
parameter.  For example, suppose I want to find some number, Z, that minimizes a measure of 

distance of this number, Z, from each observations.  So I want to minimize 
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 .  If 

we were to use the absolute value function then setting Z to the median would minimize the 
distance.  If we use instead the squared function then setting Z to the average would minimize 
the distance.  So there is an important connection between the average and the standard 
deviation, just as there is a connection between the median and the absolute deviation.  (Can you 

think of what distance measure is connected with the mode?)  

If you know calculus, you will understand why, in the age before computer calculations, 
statisticians preferred the squared difference to the absolute value of the difference.  If we look 
for an estimator that will minimize that distance, then in general in order to minimize 
something we will take its derivative.  But the derivative of the absolute value is undefined at 
zero, while the squared distance has a well-defined derivative. 

Sometimes you will see other measures of variation; the textbook goes through these 

comprehensively.  Note that the Coefficient of Variation, 
s

X
, is the reciprocal of the signal-to-

noise ratio.  This is an important measure when there is no natural or physical measure, for 
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example a Likert scale.  If you ask people to rate beers on a scale of 1-10 and find that 
consumers prefer Stone's Ruination Ale to Budweiser by 2 points, you have no idea whether 2 
is a big or a small difference – unless you know how much variation there was in the data (i.e. 
the standard deviation).  On the other hand, if Ruination costs $2 more than Bud, you can 
interpret that even without a standard deviation. 

In finance, this signal/noise ratio is referred to as the Sharpe Ratio, 
fR r




, where R  are 

the average returns on a portfolio and 
fr  is the risk-free rate; the Sharpe Ratio tells the returns 

relative to risk. 

Sometimes we will use "Standardized Data," usually denoted as iZ , where the mean is 

subtracted and then we divide by the standard deviation, so i
i

X X
Z

s


 .  This is interpretable 

as measuring how many standard deviations from the mean is any particular observation.  This 
allows us to abstract from the particular units of the data (meters or feet; Celsius or Fahrenheit; 
whatever) and just think of them as generic numbers. 

Now Do It! 

We'll use data from the Census PUMS, on just people in New York City, to begin 
actually doing statistics, using the analysis program called R.  There are further lecture notes 
on each of those topics.  Read those carefully; you'll need them to do the homework 
assignment. 

Overview of PUMS 

We will use data from the Census Bureau's  "Public Use Microdata Survey," or PUMS.  
This is collected in the American Community Survey; just about every ten years since 1790 the 
Census has made a complete enumeration of the US population as required by the 
Constitution.  I got the data from IPUMS, which collects and makes available historical and 
contemporaneous Census data samples. 

We will work on this data using R.  Later I give an overview of the basics of how to use 
that program. 

The dataset has information on 196,314 people in 85,730 households.  If there is a family 
living together in an apartment, say a parent and two kids, then each person has a row of data 
telling about him/her (age, gender, education, etc) but only the head of household would have 
information about the household (how much is spent on rent, utilities, etc.).  In this data, 
PERNUM gives the number of the person in the household; person #1 is the head of household 
(however they choose to answer).  Depending on what analysis is to be made, the researcher 
might want to look at all the people or all of the households (or subsets of either).  (Note that the 

"head of household" is defined by the person interviewed so it could be the man or woman, if there are both.) 



There are variables coding people's race/ethnicity, if they were born in the US or a 
foreign country, how much schooling they have, if they are single or married, if they're a 
veteran, what borough they live in and how they commute to work.  There is some greater 
detail about ancestry (where people can write in detail about their background).  There is 
information about their incomes.  For the household there is information about the dwelling 
including how much they spend on mortgage/rent, how many rooms, how many units, and 
when it was built. 

About R 

R is a popular and widely-used statistical program.  It might seem a bit overwhelming at 
first but you will learn to appreciate it.  Its main advantage is that it is open-source so there are 
many 'packages' built by statisticians to run particular specialized estimations.  BTW that 
means it's free for you to download and install – which is surely another advantage. 1 

Why learn this particular program?  You should not be monolingual in statistical 
analysis, it is always useful to learn more programs.  The simplest is Excel, which is very widely 
used but has a number of limitations – mainly that, in order to make it easy for ordinary people 
to use, they made it tough for power users.  SPSS is the next step: a bit more powerful but also 
a bit more difficult.  Next are Stata and SAS.  Matlab is great but proprietary so not as widely 
used.  Python might be important in some careers.  The college has R, SPSS, SAS, and Matlab 
freely available in all of the computer labs.  R is powerful, versatile, and widely used.  This site 
has detailed analytics of which software is most common in job posts and other measures, 
http://r4stats.com/articles/popularity/ . 

You might be tempted to just use Excel; resist!  Excel doesn't do many of the more 
complex statistical analyses that we'll be learning later in the course.  Make the investment to 
learn a better program; trust me on the cost/benefit ratio. 

I will give a basic (albeit short) overview in these notes.  If you want a deeper review, I 
included the book, A Beginner's Guide to R, by Zuur, Ieno and Meesters as a recommended text 
for the course as well as Applied Econometrics with R by Kleiber and Zeileis.  

The Absolute Beginning 

Start up R.  On any of the computers in the Economics lab (6/150) double-click on the 
"R" logo on the desktop to start up the program.  In other computer labs you might have to do 
a bit more hunting to find R (if there's no link on the desktop, then click the "Start" button in 
the lower left-hand corner, and look at the list of "Programs" to find R). 

If you're going to install it on your home computer, download the program from R-
project.org (http://www.r-project.org/) and follow those instructions – it has versions for Mac, 
Windows, and various Unix builds.  You might want to also download R Studio 

                                                             
1 I am grateful to Herby Brutus who was test pilot for the first version of "About R" and made useful suggestions. 



(http://www.rstudio.com/) which is a helper program that sits on top of R to make it a bit 
friendlier to work with.  (That's one of the advantages of R being open-source – the original 
developers didn't much worry about friendliness, so somebody else did.)   Of course if you have 
trouble, Google can usually help. 

With either R or R-Studio, you'll get an old-fashioned command line called "Console" 
(just " >    ") where you can type in (or copy-and-paste in) commands to the program.  

Until you get used to it, this might seem like a cost not a benefit.  But consider if you've 
ever dug through someone else's Excel sheet (or even an old one of your own), trying to figure 
out, "how did they ever get that number?!?"  For the sake of simplification and ease of use, it 
loses replicability.  It can be tough to replicate what someone else did – but replication is the 
basis of science.  So a little program that shows what you did each time can actually be really 
important.  It also means you can use other people's code and instructions. 

The guide, An Introduction to R, suggests these to give a basic flavor of what's done and 
hint at the power.  Don't worry too much about each step for now, this is just a glimpse to show 
that with a few commands you can do some relatively sophisticated estimation – i.e. for a low 
cost you can get a large benefit. 

 

x <- 1:20 

w <- 1 + sqrt(x)/2 

example1 <- data.frame(x=x, y= x + rnorm(x)*w) 

attach(example1) 

This creates x and y variables (where the rnorm command creates random numbers 

from a normal distribution), puts them into a data frame, then attaches that data frame so that 
R can use it in later calculations.  Next some stats – create a linear model (that's the "lm") then 
a "lowess" nonparametric local regression, and plot the two estimations to compare. (Just copy 
and paste these, don't worry about understanding them for now!) 

 

fm <- lm(y ~ x) 

summary(fm) 

lrf <- lowess(x, y) 

plot(x, y) 

lines(x, lrf$y) 

abline(0, 1, lty=3) 

abline(coef(fm)) 

detach() 

You should get a graph looking something like this (although with the random 
numbers, not exactly): 



 

The final "detach" command just cleans up, it is the opposite of "attach". 

For all of these commands, you can use R to type "help(__)" where you fill in __ in 
the obvious way to get help on commands including how to make various changes.  Or 
shortcut with just "?__"  so for example type "?summary" or "help(summary)".  But as I 

said, don't worry much about those commands for now, I'm not expecting you to become an R-
ninja overnight. 

Basics in R 

We will start with a few commands to get you able to follow along with these notes.  
For now you will use data that I've put together for you, ready to use in R, beginning with the 
Census Bureau's PUMS (Public Use Microdata Sample, from the American Community Survey, 
accessed from IPUMS).  Download that data from InYourClass, the file is pums_NY.RData.  I 

have restricted the sample to contain only people living in the state of New York.  You might 
want to move that into a new directory (at least remember what directory you put it in), maybe 
name the new folder/directory " pums_NY."  The commands are in the file, 
"working_on_PUMS.R" so you might download that too. 

Start with these commands in R or R-Studio; the first wipes the program clean: 
rm(list = ls(all = TRUE)) 

setwd("C:\\ pums_NY") # Change this as appropriate 
load("pums_NY.RData") 



The next, "setwd," is to set the working directory for this analysis.   Your directory is 
somewhere on your computer, figure out the path name – in Windows it is usually something 
like setwd("C:\\Users\\Kevin\\Documents\\R\\pums_NY") and for Mac, 

setwd("~/desktop/R/pums_NY") – in both of those I'm assuming you created a folder 
called "R" and then inside that another folder, "pums_NY".  The only difference is a doubled 
backslash in the name here in the program.  As long as you had put the downloaded data into 
that directory and the program can find that directory, you should not have an error. 

To check out the data use str(dat_pums_NY) which will show a list of the variables 

in the data and the first 10 or so lines of each variable, something like this  
'data.frame': 196314 obs. of  57 variables: 
 $ Age              : num  43 45 33 57 52 26 83 87 21 45 ... 
 $ female           : num  1 0 0 0 1 0 1 0 0 0 ... 
 $ PERNUM           : num  1 2 1 1 2 3 1 2 1 1 ... 

(but longer!)  In the next section I'll explain more about the data and what the lines 
mean but for now Age is the person's age in years and female is a logical 0/1 variable.  So the 
first person is a 43-year-old female, next is a 45-year-old male, etc. 

Next, run these 
attach(dat_pums_NY) 

NN_obs <- length(Age) 

Which, as I said above, attaches the data frame to the program and then the next line 
should tell you how many people are in the data: 196,314. 

Next we compare the average age of the men and the women in the data, 
summary(Age[female == 1]) 

summary(Age[!female]) 

The female dummy variable is a logical term, with a zero or one for false or true.  The 
comparison is between those who have the variable female=1 (i.e. women) and those not 
female=1 (so logical not, denoted with the "!" symbol, i.e. men).  I know, you can (and people do!) worry 

that this binary classification for gender misses some people; government statistics are just not there yet.  I find this output, 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   0.00   21.00   43.00   41.88   60.00   94.00  
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   0.00   19.00   39.00   39.19   57.00   94.00  

So women are, on average, a bit older, with an average age of 41.9 compared with 39.2 
for men.  You might wonder (if you were to begin to think like a statistician) whether that is a 
big difference – hold onto that thought! 

Alternately you can use 
mean(Age[female == 1]) 

sd(Age[female == 1]) 

mean(Age[!female]) 

sd(Age[!female]) 



to get mean and standard deviation of each.  Later you might encounter cases where 
you want more complicated dummy variables and want to use logical relations "and" "or" "not" 
(the symbols "&", "|", "!") or the ">=" or multiplication or division. 

As you're going along, if you're copying-and-pasting then you might not have had 
trouble, but if you're typing then you've probably realized that R is persnickety – the variable 
Age is not equivalent to a variable AGE nor age nor aGe …  

Rather than cutting-and-pasting all of these command lines from the internet or your 
favorite word processing software, you might want something a bit easier.  R-Studio has a text 
editor or you can find one online (I like Notepad + +) to download and install.  Don't use MS 
Word, the autocorrect will kill you.  But if you save the list of commands as a single file, you can 
just run the whole list all at once – which is easier once you get into more sophisticated stuff.  
As I mentioned above, I've saved them into a file called "working_on_PUMS.R" and you can 
create your own.  That's also a help for when you say, "D'oh!" and realize you have to go back 
and re-do some work – if it's all in a file then that's easy to fix.  (Feeling fancy, look into Sweave that 

combines the program with LATEX.) 

Before you get too far, remember to save your work. The computers in the lab wipe the 
memory clean when you log off so back up your data.  Either online (email it to yourself or 
upload to Google Drive or iCloud or InYourClass) or use a USB drive.  

Codes of Variables 

Some of the PUMS variables here have a natural interpretation, for instance Age is 
measured in years.  Actually even this has a bit of a twist.  If you type "hist(Age)" you'll get 

a histogram of Age, which doesn't show any problem.  But if you do a somewhat more 
sophisticated graph (a nonparametric kernel density), 

plot(density(Age[runif(NN_obs) < 0.1], bw = "sj")) 

you can get a fancier picture, like this: 



 

Note, for you geeks, that if you tried this with the whole sample then the 200,000 observations would be too much, 
so I've randomly selected 10% (that's the runif(NN_obs)<0.1 portion). 

The kernel density is like a histogram with much smaller bins; in this case it shows a bit 
of weirdness particularly in the right, where it looks like there are suddenly a bunch of people 
who are 94 but nobody in between.  This is due to a coding choice by the Census, where really 
old people are just labeled as "94".  So if you were to get finicky (and every good statistician is!) 
you might go back to the calculations of averages previously and modify them all like this, 
mean(Age[(female == 1)&(Age<90)]) to select just those who are female and who 
are coded as having age less than 90.  Also recall that this would not change the median values – which is one point 

in favor of that measure.  You go do that, I'll wait right here… 

Anyway, I was saying that many variables have a natural measure, like Age measured in 
years (below 90 anyway).  Others are logical variables (called dummies) like female, Hispanic, 
or married – there is a yes/no answer that is coded 1/0.  (Note that if you're creating these on your own it's good 

to give names that have that sort of yes/no answer, so a variable named 'female' is better than one named 'gender' where you'd 
have to remember who are 1 and who are 0.) 

Other variables, like PUMA, have no natural explanation at all, you have to go to the 
codebook (or, in this case, the file pums_initial_recoding.r) to find out that this is "Public Use 
Microdata Area" where 3801 codes for Washington Heights/Inwood, 3802 is Hamilton 
Heights/Manhattanville/West Harlem, etc.  The program will happily calculate the average 
value for PUMA (type in mean(PUMA) and see for yourself!) but this is a meaningless value – 

the average neighborhood code value?  If you want to select just people living in a particular 
neighborhood then you'd have to look at the list below.   



 

PUMA Neighborhood 

3701 NYC-Bronx CD 8--Riverdale, Fieldston & Kingsbridge 

3702 NYC-Bronx CD 12--Wakefield, Williamsbridge & Woodlawn 

3703 NYC-Bronx CD 10--Co-op City, Pelham Bay & Schuylerville 

3704 NYC-Bronx CD 11--Pelham Parkway, Morris Park & Laconia 

3705 NYC-Bronx CD 3 & 6--Belmont, Crotona Park East & East Tremont 

3706 NYC-Bronx CD 7--Bedford Park, Fordham North & Norwood 

3707 NYC-Bronx CD 5--Morris Heights, Fordham South & Mount Hope 

3708 NYC-Bronx CD 4--Concourse, Highbridge & Mount Eden 

3709 NYC-Bronx CD 9--Castle Hill, Clason Point & Parkchester 

3710 NYC-Bronx CD 1 & 2--Hunts Point, Longwood & Melrose 

3801 NYC-Manhattan CD 12--Washington Heights, Inwood & Marble Hill 

3802 NYC-Manhattan CD 9--Hamilton Heights, Manhattanville & West Harlem 

3803 NYC-Manhattan CD 10--Central Harlem 

3804 NYC-Manhattan CD 11--East Harlem 

3805 NYC-Manhattan CD 8--Upper East Side 

3806 NYC-Manhattan CD 7--Upper West Side & West Side 

3807 NYC-Manhattan CD 4 & 5--Chelsea, Clinton & Midtown Business District 

3808 NYC-Manhattan CD 6--Murray Hill, Gramercy & Stuyvesant Town 

3809 NYC-Manhattan CD 3--Chinatown & Lower East Side 

3810 NYC-Manhattan CD 1 & 2--Battery Park City, Greenwich Village & Soho 

3901 NYC-Staten Island CD 3--Tottenville, Great Kills & Annadale 

3902 NYC-Staten Island CD 2--New Springville & South Beach 

3903 NYC-Staten Island CD 1--Port Richmond, Stapleton & Mariner's Harbor 

4001 NYC-Brooklyn CD 1--Greenpoint & Williamsburg 

4002 NYC-Brooklyn CD 4—Bushwick 

4003 NYC-Brooklyn CD 3--Bedford-Stuyvesant 

4004 NYC-Brooklyn CD 2--Brooklyn Heights & Fort Greene 

4005 NYC-Brooklyn CD 6--Park Slope, Carroll Gardens & Red Hook 

4006 NYC-Brooklyn CD 8--Crown Heights North & Prospect Heights 

4007 NYC-Brooklyn CD 16--Brownsville & Ocean Hill 

4008 NYC-Brooklyn CD 5--East New York & Starrett City 

4009 NYC-Brooklyn CD 18--Canarsie & Flatlands 

4010 NYC-Brooklyn CD 17--East Flatbush, Farragut & Rugby 

4011 NYC-Brooklyn CD 9--Crown Heights South, Prospect Lefferts & Wingate 

4012 NYC-Brooklyn CD 7--Sunset Park & Windsor Terrace 

4013 NYC-Brooklyn CD 10--Bay Ridge & Dyker Heights 

4014 NYC-Brooklyn CD 12--Borough Park, Kensington & Ocean Parkway 

4015 NYC-Brooklyn CD 14--Flatbush & Midwood 

4016 NYC-Brooklyn CD 15--Sheepshead Bay, Gerritsen Beach & Homecrest 

4017 NYC-Brooklyn CD 11--Bensonhurst & Bath Beach 

4018 NYC-Brooklyn CD 13--Brighton Beach & Coney Island 



4101 NYC-Queens CD 1--Astoria & Long Island City 

4102 NYC-Queens CD 3--Jackson Heights & North Corona 

4103 NYC-Queens CD 7--Flushing, Murray Hill & Whitestone 

4104 NYC-Queens CD 11--Bayside, Douglaston & Little Neck 

4105 NYC-Queens CD 13--Queens Village, Cambria Heights & Rosedale 

4106 NYC-Queens CD 8--Briarwood, Fresh Meadows & Hillcrest 

4107 NYC-Queens CD 4--Elmhurst & South Corona 

4108 NYC-Queens CD 6--Forest Hills & Rego Park 

4109 NYC-Queens CD 2--Sunnyside & Woodside 

4110 NYC-Queens CD 5--Ridgewood, Glendale & Middle Village 

4111 NYC-Queens CD 9--Richmond Hill & Woodhaven 

4112 NYC-Queens CD 12--Jamaica, Hollis & St. Albans 

4113 NYC-Queens CD 10--Howard Beach & Ozone Park 

4114 NYC-Queens CD 14--Far Rockaway, Breezy Point & Broad Channel 

You could find the average age of women/men living in a particular neighborhood by 
adding in another "&" to the previous line so mean(Age[(female == 

1)&(Age<94)&(PUMA == 4102)]) for Jackson Heights.  (Or find the average age of each PUMA 

with tapply(Age, PUMA, mean) which, I admit, is a rather ugly bit of code.) 

If you do a lot of analysis on a particular subgroup, it might be worthwhile to create a 
subset of that group, so that you don't have to always add on logical conditions.  This can be 
done with the expressions: 

restrict1 <- as.logical(Age >= 25) 

dat_age_gt_25 <- subset(dat_pums_NY, restrict1) 

So then you detach() the original dataset and instead 
attach(dat_age_gt_25).  Then any subsequent analysis would be just done on that 

subset.  Just remember that you've done this (again, this is a good reason to save the 
commands in a program) otherwise you'll wonder why you suddenly don't have any kids in the 
sample.  

You might be tired and bored by these details, but note that there are actually 
important choices to be made here, even in simply defining variables.  Take the fraught 
American category of "race".  This data has a variable, RACED, showing how people chose to 
classify themselves, as 'White,' 'Black,' 'American Indian or Alaska Native,' (plus enormous 
detail of which tribe), Asian, various combinations, and many more codes. 

Suppose you wanted to find out how many Asians are in a particular population.  You 
could count how many people identify themselves as Asian only; you could count how many 
people identify as Asian in any combination.  Sometimes the choice is irrelevant; sometimes it 
can skew the final results (e.g. the question in some areas, are there more blacks or more 
Hispanics?). 



Again, there's no "right" way to do it because there's no science in this peculiar-but-
popular concept of "race".  People's conceptions of themselves are fuzzy and complicated; 
these measures are approximations. 

Basics of government race/ethnicity classification 

The US government asks questions about people's race and ethnicity.  These categories 
are social constructs, which is a fancy way of pointing out that they are not based on hard 
science but on people's own views of themselves (influenced by how people think that other 
people think of them...).  Currently the standard classification asks people separately about 
their "race" and "ethnicity" where people can pick labels from each category in any 
combination. 

The "race" categories include:  "White alone,"  "Black or African-American alone,"  
"American Indian alone," "Alaska Native alone," "American Indian and Alaska Native tribes 
specified; or American Indian or Alaska native, not specified and no other race,"  "Asian alone,"  
"Native Hawaiian and other Pacific Islander alone,"  "Some other race alone," or "Two or more 
major race groups."  Then the supplemental race categories offer more detail. 

These are a peculiar combination of very general (well over 40% of the world's 
population is "Asian") and very specific ("Alaska Native alone") representing a peculiar history 
of popular attitudes in the US.  Only in the 2000 Census did they start to classify people in 
mixed races.  If you were to go back to historical US Censuses from more than a century ago, 
you would find that the category "race" included separate entries for Irish and French and 
various other nationalities.  Stephen J Gould has a fascinating book, The Mismeasure of Man, 
discussing how early scientific classifications of humans tried to "prove" which 
nationalities/races/groups were the smartest.  Ta-Nehisi Coates says, "racism invented race in 
America." 

Note that "Hispanic" is not "race" but rather ethnicity (includes various other labels such 
as Spanish, Latino, etc.).  So a respondent could choose "Hispanic" and any race category – 
some choose "White," some choose "Black," some might be combined with any other of those 
complicated racial categories. 

If you wanted to create a variable for those who report themselves as African-American 
and Hispanic, you'd use the expression (AfAm == 1) & (Hispanic == 1); sometimes 

stats report for non-Hispanic whites so (white == 1) & (Hispanic != 1).  You can 
create your own classifications depending on what questions you're investigating. 

The Census Bureau gives more information here, 
http://www.census.gov/newsroom/minority_links/minority_links.html 

All of these racial categories make some people uneasy: is the government encouraging 
racism by recognizing these classifications?  Some other governments choose not to collect 
race data.  But that doesn't mean that there are no differences, only that the government 



doesn't choose to measure any of these differences.  In the US, government agencies such as 
the Census and BLS don't generally collect data on religion. 

Re-Coding complicated variables from initial data 

If we want more combinations of variables then we create those.  Usually a statistical 
analysis spends a lot of time doing this sort of housekeeping – dull but necessary. 

Educational attainment is also classified with complicated codes: the original data has 
code 63 to mean high school diploma, 64 for a GED, 65 for less than a year of college, etc.  I 
have transformed them into a series of dummy variables, zero/one variables for whether a 
person has no high school diploma, just a high school diploma, some college (but no degree), 
an associate's degree, a bachelor's degree, or an advanced degree.  An advantage of these is 
that finding the mean of a zero/one variable gives the fraction of the sample who have a one.  
So if we wanted to find how many adults have various educational qualifications, we can use 
mean(educ_nohs[Age >= 25]) etc, to find that 14% have no high school, 28% have just a high 
school diploma, 16% have some college but no degree, 9% have an associate's, 18% have a 
bachelor's, and 15% have an advanced degree.  You could do this by borough or neighborhood 
to figure out which places have the most/least educated people.  (Ahem! You <cough> COULD do that 

right now.  Or wait for the homework assignment.) 

You can look at the variables in this dataset by the simple command 
str(dat_pums_NY) which gives the name of each variable along with the first few data 

points of each.  (I did this a few sections ago, so this is review.)  For this data it will show 
 $ Age              : num  43 45 33 57 52 26 83 87 21 45 ... 
 $ female           : num  1 0 0 0 1 0 1 0 0 0 ... 
 $ PERNUM           : num  1 2 1 1 2 3 1 2 1 1 ... 

so the first person in the data is aged 43 and is female. PERNUM is the Person Number in the 
household, so each new value of 1 indicates a new household.  So the first household has the 
43-year-old female and a 45-year-old male, then the second household has just a 33-y-o male, 
etc.  You should look over the other variables in the data; the end of the file has some of the 
codes – for example the Ancestry 1 and 2 variables have enormously detailed codings of how 
people state their ancestry. 

How to install packages  

R depends crucially on "packages" – that's the whole reason that the open-source 
works.  Some statistician invents a cool new technique, then writes up the code in R and makes 
it available.  If you used a commercial package you'd have to wait a decade for them to update 
it; in R it's here now.  Also if somebody hacks a nicer or easier way to do stuff, they write it up. 

Some of the programs I use will depend on R packages.  Installing them is a 2-step 
process: first, from R Studio, choose "Tools \ Install Packages" from the menu (from plain R, it's 
"Packages \ Install Packages").  Then in the command line or program, type 
library(packagename). (Fill in name of package for "packagename".) 



Time Series in R 

This next part is mostly optional, just again showing some of the stuff that R can easily 
do for time series data.  First install some packages, 

library(zoo) 

library(lattice) 

library(latticeExtra) 

library(gdata) 

rm(list = ls(all = TRUE)) 

Then get data from online – also a cool easy thing to do with R. 
# original data from: 

oilspot_url <- 

"http://www.eia.gov/dnav/pet/xls/PET_PRI_SPT_S1_D.xls" 

oilspot_dat <- read.xls(oilspot_url, sheet = 2, pattern = 

"Cushing") 

 

oilfut_url <- 

"http://www.eia.gov/dnav/pet/xls/PET_PRI_FUT_S1_D.xls" 

oilfut_dat <- read.xls(oilfut_url, sheet = 2, pattern = 

"Cushing, OK Crude Oil Future Contract 1") 

Use R's built-in system for converting jumbles of letters and numbers into dates, 
date_spot <- as.Date(oilspot_dat$Date, format='%b %d%Y') 

date_fut <- as.Date(oilfut_dat$Date, format='%b %d%Y') 

Then R's "ts" for time-series and the "zoo" package. 
wti_spot <- 

ts(oilspot_dat$Cushing..OK.WTI.Spot.Price.FOB..Dollars.per.Barre

l., start = c(1986,2), frequency = 365) 

wti_fut1 <- 

ts(oilfut_dat$Cushing..OK.Crude.Oil.Future.Contract.1..Dollars.p

er.Barrel., start = c(1983,89), frequency = 365) 

 

wti_sp_dat <- zoo(wti_spot,date_spot) 

wti_ft_dat <- zoo(wti_fut1,date_fut) 

 

wti_spotfut <- merge(wti_sp_dat,wti_ft_dat, all=FALSE) 

And plot the results. 
plot(wti_spotfut, plot.type = "single", col = c("black", 

"blue")) 

 

# tough to see any difference, so try this 

wti_2013 <- window(wti_spotfut, start = as.Date("2013-01-

01"), end = as.Date("2013-12-31")) 



plot(wti_2013, plot.type = "single", col = c("black", 

"blue")) 

 

# if you like this publication, you can get fancier... 

asTheEconomist(xyplot(wti_2013, xlab="Cushing WTI Spot 

Future Price",)) 

De-bugging 

Without a doubt, programming is tough.  In R or with any other program, it is 
frustrating and complicated and difficult to do it the first few times.  Some days it feels like a 
continuous battle just to do the simplest thing!  Keep going despite that, keep working on it.  

Your study group will be very helpful of course. 

There are lots of online resources for learning R; like R for Beginners by Paradis, or the 
main intro from the R website, An Introduction to R.   

I mentioned some books at the beginning, A Beginner's Guide to R, by Zuur, Ieno and 
Meesters and Applied Econometrics with R by Kleiber and Zeileis. 

Then there are all of the websites, including: 

 http://flowingdata.com/2012/06/04/resources-for-getting-started-with-r/ 

 http://statmaster.sdu.dk/bent/courses/ST501-2011/Rcard.pdf with lists of 
common commands 

 http://www.cookbook-r.com/ a "cookbook" for R 

 http://www.statmethods.net/ with "Quick R" 

 http://www.r-bloggers.com/  

If you have troubles that you can't solve, email me for help.  But try to narrow down 
your question: if you run 20 lines of code that produce an error, is there a way to reproduce the 
error after just 5 lines?  What if you did the same command on much simpler data, would it still 
cause an error?  Sending emails like "I have a problem with errors" might be cathartic but is not 
actually useful to anyone.  If you've isolated the error and read the help documentation on that 
command, then you're on your way to solving the problem on your own. 

Other Datasets 

The class will use a number of other data sets, which I will provide to you already 
formatted for R.  These are usually assembled by government bureaucrats who love their 
acronyms so they include names like Fed SCF, NHIS, BRFSS, NHANES, WVS, PUMS. 

http://flowingdata.com/2012/06/04/resources-for-getting-started-with-r/
http://statmaster.sdu.dk/bent/courses/ST501-2011/Rcard.pdf
http://www.cookbook-r.com/
http://www.statmethods.net/
http://www.r-bloggers.com/


Overview of ATUS data 

We will also use data from the "American Time Use Survey," or ATUS.  This asks 
respondents to carefully list how they spent each hour of their time during the day; it's a 
tremendous resource.  The survey data is collected by the US Bureau of Labor Statistics (BLS), 
a US government agency.  You can find more information about it here, 
http://www.bls.gov/tus/. 

The dataset has information on ## people interviewed from 2003-2013.  This gives you 
a ton of information – we really need to work to get even the simplest information from it. 

The dataset is ready to use in R.  The ATUS has data telling how many minutes each 
person spent on various activities during the day.  These are created from detailed logbooks 
that each person kept, recording their activities throughout the day. 

They recorded how much time was spent with family members, with spouse, sleeping, 
watching TV, doing household chores, working, commuting, going to church/religious 
ceremonies, volunteering – there are hundreds of specific data items! 

The NY Times had this graphic showing the different uses of time during the day [here 
http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html is the full interactive chart where 
you can compare the time use patterns of men and women, employed and unemployed, and 
other groups – a great way to lose an evening! The article is here 
http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2  ] 

 

To use the data effectively, it is helpful to understand the ATUS classification system, 
where additional numbers at the right indicated additional specificity.  The first two digits give 
generic broad categories.  The general classification T05 refers to time spent doing things 

http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html
http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2


related to work.  T0501 is specific to actual work; T050101 is "Work, main job" then T050102 is 
"Work, other job," T050103 is "Security Procedures related to work," and T050189 is "Working, 
Not Elsewhere Classified," abbreviated as n.e.c. (usually if the final digit is a nine then that 
means that it is a miscellaneous or catch-all category).  Then there are activities that are 
strongly related to work, that a person might not do if they were not working at a particular job 
– like taking a client out to dinner or golfing.  These get their own classification codes, 
T050201, T050202, T050203, T050204, or T050289.  The list continues; there are "Income-
generating hobbies, crafts, and food" and "Job interviewing" and "Job search activities."  These 
have other classifications beginning with T05 to indicate that they are work-related. 

So for instance, to create a variable, "Time Spent Working" that we might label 
"T_work," you would add up T050101, T050102, T050103, T050189, T050201, T050202, 
T050203, T050204, T050289, T050301, T050302, T050303, T050304, T050389,  T050403,  
T050404,  T050405,  T050481,  T050499, and T059999.  You might want to add in "Travel 
related to working" down in T180501.  (No sane human would remember all these codings but 
you'd look at the "Labels" and create a new variable.)  It's tedious but not difficult in any way. 

Some variables are even more detailed – playing sports is broken down into aerobics, 
baseball, basketball, biking, billiards, boating, bowling, ... all the way to wrestling, yoga, and 
"Not Elsewhere Classified" for those with really obscure interests.  Then there are similar 
breakdowns for watching those sports.  Most people will have a zero value for most of these 
but they're important for a few people. 

You can imagine that different researchers, exploring different questions, could want 
different aggregates.  So the basic data has a very fine classification which you can add up 
however you want. 

Fed SCF, Survey of Consumer Finances produced by the Federal Reserve 

This survey is only made once every three years; the most recent data is from 2010.  
The survey gives a tremendous amount of information about people's finances: how much 
they have in bank accounts (and how many bank accounts), credit cards, mortgages, student 
loans, auto and other loans, retirement savings, mutual funds, other assets – the whole 
panoply of financial information.  But there's a catch.  As you probably know from class as well 
as from personal experience, wealth is very unequally distributed.  Some people have few 
financial assets at all, not even a bank account.  Many people have only a few basic financial 
instruments: a credit card, some basic loans and a simple bank account.  Then a few wealthy 
people have tremendously complicated portfolios of assets. 

How does a statistical survey deal with this?  By unequal sampling then weighting – all 
of the samples I provide here do this to one degree or another, but it becomes very important 
in the Fed SCF.  The idea is simple: from the perspective of a survey about finance, all people 
with no financial assets look the same – they have "zero" for most answers in the survey.  So a 
single response is an accurate sample for lots and lots of people.  But people with lots of 
financial assets have varied portfolios, so a single response is an accurate sample for only a 



small number of people.  So if I were tasked with finding out about the financial system but 
could only survey 10 people, I might reasonably choose to sample 8 rich people with 
complicated portfolios and maybe 1 middle-class person and 1 poor person.  I would keep in 
mind that the population of people in the country are not 80% rich, of course!  In somewhat 
fancier statistics, I would weight each person, so the poor person would represent tens of 
millions of Americans, the middle-class person might represent more than a hundred million, 
and the rich people would each only represent a few million.  If I wanted to extrapolate from 
the sample to the population, I would have to use these weights. 

Many of the surveys we'll be using in class are weighted, and if you want to use them 
correctly you'll have to do the weighted versions.  I'm skipping that for this class only because I 
think the cost outweighs the benefits for students early in their curriculum. 

Actually using the Fed SCF survey can be difficult because the information is so richly 
detailed.  You might want, say, a family's total debt, but instead get debt on credit card #1, 
card #2, all types of different loans, etc. so you have to add them up yourself.  You have to do a 
bit of preliminary work. 

NHIS National Health Interview Survey 

This dataset has all sorts of medical and healthcare data – who has insurance, how 
often they're sick, doctor visits, pregnancy, weight/height.  In the US many people have health 
insurance provided through their work so the economics of health and economics of insurance 
become tangled together. 

BRFSS, Behavioral Risk Factor Surveillance System Survey 

This dataset has many observations on a wide variety of risky behaviors: smoking, 
drinking, poor eating, flu shots, whether household has a 3-day supply of food and water...  
There is some economic data such as a person's income group. 

NHANES – National Health And Nutrition Examination Survey 

This has even more detail but on a smaller sample than the BRFSS.  On whether people 
have healthy lifestyles: eat veg and fruit, their BMI, whether they smoke (various things), use 
drugs, sex (number of partners) – lots of things that are interesting enough to compensate for 
the dull (!?!?) stats necessary to analyze it. 

There are other common data sources that are easily available online, which you can 
consider as you reflect upon your final project. 

IPUMS  

This is a tremendous data source, that has historical census data for past centuries, 
from  http://www.ipums.org/. Some of the historical questions are weird (they asked if a person 



was "idiotic" or "dumb" – which sounds crazy but used to be scientific terms).  It includes full 
names and addresses from long-ago census data. 

WVS World Values Survey 

This has a bit less economics but still lots of interesting survey data about attitudes of 
people of many issues; the respondents are global from scores of countries over several 
different years.  There is some information about personal income, education and occupation 
so you can see how those correlate with, say, attitudes toward democracy, religiosity, or other 
hot issues. 

Demographic and Health Surveys from USAID 

These give careful data about people in developing countries, to look at, say, how 
economic growth impacts nourishment. 



Consumer Expenditure Data 

Tons of data about household consumption patterns: how much they spend on shelter, 
transportation, food, gadgets, etc. 

  



On Correlations: Finding Relationships between Two Variables 

In a case where we have two variables, X and Y, we want to know how or if they are 
related, so we use covariance and correlation. 

Suppose we have a simple case where X has a two-part distribution that depends on 
another variable, Y, where Y is what we call a "dummy" variable: it is either a one or a zero but 
cannot have any other value.  (Dummy variables are often used to encode answers to simple 
"Yes/No" questions where a "Yes" is indicated with a value of one and a "No" corresponds with 
a zero.  Dummy variables are sometimes called "binary" or "logical" variables.)  X might have a 
different mean depending on the value of Y. 

There are millions of examples of different means between two groups.  GPA might be 
considered, with the mean depending on whether the student is a grad or undergrad.  Or 
income might be the variable studied, which changes depending on whether a person has a 
college degree or not.  You might object: but there are lots of other reasons why GPA or 
income could change, not just those two little reasons – of course!  We're not ruling out any 
further complications; we're just working through one at a time. 

In the PUMS data, X might be "wage and salary income in past 12 months" and Y would 
be male or female.  Would you expect that the mean of X for men is greater or less than the 
mean of X for women? 

Run this on R ...  

In a case where X has two distinct distributions depending on whether the dummy 
variable, Y, is zero or one, we might find the sample average for each part, so calculate the 
average when Y is equal to one and the average when Y is zero, which we denote  

    0 10 , 1 ,Y YX Y X Y or X X   .  These are called conditional means since they give the 

mean, conditional on some value. 

In this case the value of 1X Y   is the same as the average of the two variables 

multiplied together, X Y . 
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This is because the value of anything times zero is itself zero, so the term  
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drops out.  While it is easy to see how this additional information is valuable when Y is a 
dummy variable, it is a bit more difficult to see that it is valuable when Y is a continuous 
variable – why might we want to look at the multiplied value, X Y ?   



Use Your Eyes 

We are accustomed to looking at graphs that show values of two variables and trying to 
discern patterns.  Consider these two graphs of financial variables. 

This plots the returns of Hong Kong's Hang Seng index against the returns of 
Singapore's Straits Times index (over the period from Dec 29, 1989 to Sept 1, 2010) 

 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) 
during Jan 2, 1990 – Sept 1, 2010. 



 

You don't have to be a highly-skilled econometrician to see the difference in the 
relationships.  It would seem reasonable to state that the Hong Kong and Singapore stock 
returns are closely linked; while US stock returns are not closely related to US interest rates.  
(Remember, in most economic applications we want to use stock returns not the level of the 
price or index; typically returns are 𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1).) 

We want to ask, how could we measure these relationships?  Since these two graphs 
are rather extreme cases, how can we distinguish cases in the middle?  And then there is one 
farther, even more important question: how can we try to guard against seeing relationships 
where, in fact, none actually exist?  The second question is the big one, which most of this 
course (and much of the discipline of statistics) tries to answer.  But start with the first 
question. 

How can we measure the relationship? 

Correlation measures how/if two variables move together.   



Recall from above that we looked at the average of X Y  when Y was a dummy 
variable taking only the values of zero or one.  Return to the case where Y is not a dummy but 
is a continuous variable just like X.  It is still useful to find the average of X Y  even in the case 

where Y is from a continuous distribution and can take any value, 
1
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n 

  . It is a bit 

more useful if we re-write X and Y as differences from their means, so finding: 
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This is the covariance, which is denoted cov(X,Y) or XY. 

A positive covariance shows 
that when X is above its mean, Y 
tends to also be above its mean 
(and vice versa) so either a positive 
number times a positive number 
gives a positive or a negative times 
a negative gives a positive.  

A negative covariance 
shows that when X is above its 
mean, Y tends to be below its mean 
(and vice versa).  So when one is 
positive the other is negative, which 
gives a negative value when 
multiplied. 

 

A bit of math (extra): 
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(a strange case because it makes FOIL look like just FL!)

 

 

Covariance is sometimes scaled by the standard deviations of X and Y in order to 
eliminate problems of measurement units, so the correlation is: 
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 or Corr(X,Y), 

where the Greek letter "rho" denotes the correlation coefficient.  With some algebra 

you can show that ρ is always between negative one and positive one; 1 1XY   . 

Two variables will have a perfect correlation if they are identical; they would be 
perfectly inversely correlated if one is just the negative of the other (assets and liabilities, for 
example).  Variables with a correlation close to one (in absolute value) are very similar; 
variables with a low or zero correlation are nearly or completely unrelated. 

Sample covariances and sample correlations 

Just as with the average and standard deviation, we can estimate the covariance and 
correlation between any two variables.  And just as with the sample average, the sample 
covariance and sample correlation will have distributions around their true value. 

Go back to the case of the Hang Seng/Straits Times stock indexes.  We can't just say 
that when one is big, the other is too.  We want to be a bit more precise and say that when one 
is above its mean, the other tends to be above its mean, too.  We might additionally state that, 
when the standardized value of one is high, the other standardized value is also high.  (Recall 

that the standardized value of one variable, X, is ,
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Multiplying the two values together, 
, ,X i Y iZ Z , gives a useful indicator since if both 

values are positive then the multiplication will be positive; if both are negative then the 
multiplication will again be positive.  So if the values of ZX and ZY are perfectly linked together 
then multiplying them together will get a positive number.  On the other hand, if ZX and ZY are 
oppositely related, so whenever one is positive the other is negative, then multiplying them 
together will get a negative number.  And if ZX and ZY are just random and not related to each 
other, then multiplying them will sometimes give a positive and sometimes a negative 
number. 

Sum up these multiplied values and get the (population) correlation,
, ,
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This can be written as 
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correlation between X and Y is denoted XY ; the sample correlation is XYr .  Again the 

difference is whether you divide by N or (N – 1).  Both correlations are always between -1 and 
+1; 1 1; 1 1r      . 

We often think of drawing lines to summarize relationships; the correlation tells us 
something about how well a line would fit the data.  A correlation with an absolute value near 1 
or -1 tells us that a line (with either positive or negative slope) would fit well; a correlation near 
zero tells us that there is "zero relationship."   

The fact that a negative value can infer a relationship might seem surprising but 
consider for example poker.  Suppose you have figured out that an opponent makes a 
particular gesture when her cards are no good – you can exploit that knowledge, even if it is a 
negative relationship.  In finance, if a fund manager finds two assets that have a strong 
negative correlation, that one has high returns when the other has low returns, then again this 
information can exploited by taking offsetting positions. 

You might commonly see a "covariance matrix" if you were working with many 
variables; the matrix shows the covariance (or correlation) between each pair.  So if you have 4 
variables, named (unimaginatively) X1, X2, X3, and X4, then the covariance matrix would be: 

 X1 X2 X3 X4 

X1 11    

X2 21 22   

X3 31 32 33  

X4 41 42 34 44 

Where the matrix is "lower triangular" because cov(X,Y)=cov(Y,X) [return to the 
formulas if you're not convinced] so we know that the upper entries would be equal to their 
symmetric lower-triangular entry (so the upper triangle is left blank since the entries would be 
redundant).  And we can also show [again, a bit of math to try on your own] that cov(X,X) = 
var(X) so the entries on the main diagonal are the variances. 

If we have a lot of variables (15 or 20) then the covariance matrix can be an important 
way to easily show which ones are tightly related and which ones are not. 

As a practical matter, sometimes perfect (or very high) correlations can be understood 
simply by definition: a survey asking "Do you live in a city?" and "Do you live in the 
countryside?" will get a very high negative correlation between those two questions.  A firm's 
Assets and Liabilities ought to be highly correlated.  But other correlations can be caused by 
the nature of the sampling.  



Higher Moments 

The third moment is usually measured by skewness, which is a common characteristic 
of financial returns: there are lots of small positive values balanced by fewer but larger 
negative values.  Two portfolios could have the same average return and same standard 
deviation, but if one is not symmetric distribution (so has a non-zero skewness) then it would 
be important to understand this risk. 

The fourth moment is kurtosis, which measures how fat the tails are, or how fast the 
probabilities of extreme values die off.  Again a risk manager, for example, would be interested 
in understanding the differences between a distribution with low kurtosis (so lots of small 
changes) versus a distribution with high kurtosis (a few big changes). 

If these measures are not perfectly clear to you, don't get frustrated – it is difficult, but 
it is also very rewarding.  As the Financial Crisis has shown, many top risk managers at name-
brand institutions did not understand the statistical distributions of the risks that they were 
taking on.  They plunged the global economy into recession and chaos because of it. 

These are called "moments" to reflect the origin of the average as being like weights on a lever or "moment arm".  The 
average is the first moment, the variance is the second, skewness is third, kurtosis is fourth, etc.  If you take a class using Calculus 
to go through Probability and Statistics, you will learn moment-generating functions. 

More examples of correlation: 

It is common in finance to want to know the correlation between returns on different 
assets. 

First remember the difference between the returns and the level of an asset or index! 

An investment in multiple assets, with the same return but that are uncorrelated, will 
have the same return but with less overall risk.  We can show this on Excel; first we'll do 
random numbers to show the basic idea and then use specific stocks. 

How can we create normally-distributed random numbers in Excel?  RAND() gives 
random numbers between zero and one; NORMSINV(RAND()) gives normally distributed 
random numbers.  (If you want variables with other distributions, use the inverse of those 
distribution functions.)  Suppose that two variables each have returns given as 2% + a 
normally-distributed random number; this is shown in Excel sheet, lecturenotes3.xls 

With finance data, we use the return not just the price.  This is because we assume that 
investors care about returns per dollar not the level of the stock price. 

Important Questions 

 When we calculate a correlation, what number is "big"?  Will see random 
errors – what amount of evidence can convince us that there is really a correlation? 



 When we calculate conditional means, and find differences between 
groups, what difference is "big"?  What amount of evidence would convince us of a 
difference? 

Example: 

Mazar, Amir, Ariely (2005) "Dishonesty of Honest People" [SSRN-id979648.pdf, 
available online] 

Students solve math problems and report how many, of 20, were solved (offered a 
small reward for success).  Here is a sample question: Which 2 numbers add to 10? You can 
see that finding the answer is tedious but doesn't require advanced mathematical knowledge. 

 

In one setup, the students first threw out the answer sheet and then just said how many 
they'd solved; in the other setup they handed over the sheet to be checked – so it was easier to 
cheat in the first case.  Students who had to hand in the sheet reported solving an average of 
3.1 out of 20 problems in the short time given; students who threw out the sheet reported 4.2.   

Are people more dishonest, when given a chance to be?  Really?  What information do 
we need, to be more confident about our knowledge?  Ariely did another study looking at 
whether wearing counterfeit sunglasses made people more likely to cheat. 

To answer these, we need to think about randomness – in other perceptual problems, 
what would be called noise or blur. 

Learning Outcomes (from CFA exam Study Session 2, Quantitative Methods) 

Students will be able to: 



 calculate and interpret relative frequencies, given a frequency distribution, and describe 
the properties of a dataset presented as a histogram; 

 define, calculate, and interpret measures of central tendency, including the population 
mean, sample mean, median, and mode; 

 define, calculate, and interpret measures of variation, including the population standard 
deviation and the sample standard deviation; 

 define and interpret the covariance and correlation; 

 define a random variable, an outcome, an event, mutually exclusive events, and 
exhaustive events; 

 distinguish between dependent and independent events; 

  



Probability 

Beyond presenting some basic measures such as averages and standard deviations, we 
want to try to understand how much these measures can tell us about the larger world.  How 
likely is it, that we're being fooled, into thinking that there's a relationship when actually none 
exists?  To think through these questions we must consider the logical implications of 
randomness and often use some basic statistical distributions (discrete or continuous). 

Think Like a Statistician 

The basic question that a Statistician must ask is "How likely is it, that I'm being 
fooled?"  Once we accept that the world is random (rather than a manifestation of some god's 
will), we must decide how to make our decisions, knowing that we cannot guarantee that we 
will always be right.  There is some risk that the world will seem to be one way, when actually it 
is not.  The stars are strewn randomly across the sky but some bright ones seem to line up into 
patterns.  So too any data might sometimes line up into patterns. 

Statisticians tend to stand on their heads and ask, suppose there were actually no 
relationship?  (Sometimes they ask, "suppose the conventional wisdom were true?")  This 
statement, about "no relationship," is called the Null Hypothesis, sometimes abbreviated as 
H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We 
know that there is some probability that nature will fool me, that it will seem as though there is 
a relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?"  What if there were actually no 
relationship, is there some chance that I could see what I actually see? 

Randomness in Sports 

As an example, consider sports events.  As any sports fan knows, a team or individual 
can get lucky or unlucky.  The baseball World Series, for example, has seven games.  It is 
designed to ensure that, by the end, one team or the other wins.  But will the better team 
always win? 

First make a note about subjectivity: if I am a fan of the team that won, then I will be 
convinced that the better team won; if I'm a fan of the losing team then I'll be certain that the 
better team got unlucky.  But fans of each team might agree, if they discussed the question 
before the Series were played, that luck has a role. 

Will the better team win?  Clearly a seven-game Series means that one team or the 
other will win, even if they are exactly matched (if each had precisely a 50% chance of 
winning).  If two representatives tossed a coin in the air seven times, then one or the other 
would win at least four tosses – maybe even more.  We can use a computer to simulate seven 



coin-tosses by having it pick a random number between zero and one and defining a "win" as 
when the random number is greater than 0.5. 

Or instead of having a computer do it, we could use a bit of statistical theory. 

Some math 

Suppose we start with just one coin-toss or game (baseball uses 7 games to decide a 
champion; football uses just one).  Choose to focus on one team so that we can talk about 
"win" and "loss".  If this team has a probability of winning that is equal to p, then it has a 
probability of losing equal to (1-p).  So even if p, the probability of winning, is equal to 0.6, 
there is still a 40% chance that it could lose a single game.  In fact unless the probability of 
winning is 100%, there is some chance, however remote, that the lesser team will win. 

What about if they played two games?  What are the outcomes?  The probability of a 
team winning both games is p*p = p2.  If the probability were 0.5 then the probability of 
winning twice in a row would be 0.25. 

A table can show this: 

 Win Game 1 {p} Lose Game 1 {1-p} 

Win Game 2 {p} outcome: W,W L,W 

Lose Game 2 {1-p} W,L L,L 

This is a fundamental fact about how probabilities are represented mathematically: if 
the probabilities are not related (i.e. if the tossed coin has no memory) then the probability of 
both events happening is found my multiplying the probabilities of each individual outcome.  
(What if they're not unrelated, you may ask?  What if the first team that wins gets a 
psychological boost in the next so they're more likely to win the second game?  Then the math 
gets more complicated – we'll come back to that question!) 

The math notation for two events, call them A and B, both happening is: 

   Pr PrA and B A B   

The fundamental fact of independence is then represented as: 

     Pr Pr PrA B A B if A and B are independent   

where we use the term "independent" for when there is no relationship between them. 

The probability that a team could lose both games is (1-p)*(1-p) = (1-p)2.  The 
probability that the teams could split the series (each wins just one) is p*(1-p) + (1-p)*p = 2p(1-



p).  There are two ways that each team could win just one game: either the series splits 
(Win,Loss) or (Loss,Win). 

For three games the outcomes become more complicated: now there are 8 
combinations of win and loss:  

(W,W,W) (W,W,L) (W,L,W) (L,W,W) (W,L,L) (L,W,L) (L,L,W) (L,L,L) 

p*p*p p*p*(1-p) p*(1-p)p (1-p)p*p p(1-p)(1-
p) 

(1-p)p(1-
p) 

(1-p)(1-
p)p 

(1-p)(1-
p)(1-p) 

and the probabilities are in the row below.   

The team will win the series in any of the left-most 4 outcomes so its overall probability 
of winning the series is  

 3 23 1p p p   

while its probability of losing the series is 

   
2 3

3 1 1p p p   . 

Clearly if p is 0.5 so that p=(1-p) then the chances of either team winning the three-
game series are equal.  If the probabilities are not equal then the chances are different, but as 
long as there is a probability not equal to one or zero (i.e. no certainty) then there is a chance 
that the worse team could win. 

If you keep on working out the probabilities for longer and longer series you might 
notice that the coefficients and functional forms are right out of Pascal's Triangle.  This is your 
first notice of just how "normal" the Normal Distribution is, in the sense that it jumps into all 
sorts of places where you might not expect it.  The terms of Pascal's Triangle begin (as N 
becomes large) to form a normal distribution!  We'll come back to this again... 

Terms and Definitions 

Some basics: a sample space is the entire list of possible outcomes (can be whole long 
list or even mathematical sets such as real numbers); events are subsets of the sample space.  
Simple event is a single outcome (one dice comes up 6); a compound event is several outcomes 
(both dice come up 6).  Notate an event as A.  The complement of the event is the set of all 
events that are not in A; this is A'. 

The events must be mutually exclusive and exhaustive, so a good deal of the hard 
work in probability is just figuring out how to list all of the events. 

Mutually exclusive means that the events must be clearly defined so that the data 
observed can be classified into just one event.  Exhaustive means that every possible data 



observed must fit into some event.  The "mutually exclusive" part means that probabilities can 
be added up, so that if the probability of rolling a "1" on a dice is 1/6 and the probability of 
rolling a 6 is 1/6, then the probability of rolling either a 1 or 6 is 2/6 = 1/3.  The "exhaustive" part 
of defining the events means that the sum of all the events must equal one. 

For example, suppose we roll two dice.  We might want to think of "die #1 comes up as 
6" as one event [in English, the singular of "dice" is "die" – how morbid gambling can be!].  But 
the other die can have 6 different values without changing the value of the first die.  So a better 
list of events would be the integers from 2 to 12, the sum of the dice values – with the note that 
there are many ways of achieving some of the events (a 7 is a 6 &1 or a 5&2, or 4&3, or 3&4, or 
2&5, or 1&6) while other events have only one path (each die comes up 6 to make 12). 

A sample space is the set of all possible events.  The sum of the probability of all of the 
events in the sample space is equal to one.  There is a 100% chance that something happens 
(provided we've defined the sample space correctly).  So if a lottery brags that there is a 2% 
chance that "you might be a winner!" this is equivalent to stating that there is a 98% chance 
that you'll lose. 

Events have probability; this must lie between zero and one (inclusive); so 0 1P  .  
The probability of all of the events in the sample space must sum to one.  This means that the 

probability of an event and its complement must sum to one:     1P A P A  . 

Probabilities come from empirical results (relative frequency approach) or the classical 
(a priori or postulated) assignment or from subjective beliefs that people have.   

In empirical approach, the Law of Large Numbers is important: as the number of 
identical trials increases, the estimated frequency approaches its theoretical value.  You can try 
flipping coins and seeing how many come up heads (flip a bunch at a time to speed up the process); it 
should be 50%. 

We are often interested in finding the probability of two events both happening; this is 
the "intersection" of two events; the logical "and" relationship; two things both occurring.  In 
the PUMS data we might want to find how many females have a college degree; in poker we 
might care about the chance of an opponent having an ace as one of her hole cards and the 
dealer turning up a king.  We notate the intersection of A and B as A B  and want to find 

 P A B .  In SPSS this is notated with "&". 

The "union" of two events is the logical "or" so it is either of two events occurring; this is 

A B  so we might consider  P A B  or, in SPSS, "|".  In the PUMS data we might want to 

combine people who report themselves as having race "black" with those who report "black – 
white".   In cards,  it is the probability that any of my 3 opponents has a better hand. 

Married people can buy life insurance policies that pay out either when the first person 
dies or after both die – logical and vs or. 



Venn Diagrams (Ballantine) 

 

 

General Law of Addition 

       P A B P A P B P A B      

and so        P A B P A P B P A B      

Mutually Exclusive (Special Law of Addition),  

If A B    then   0P A B   and      P A B P A P B    

Conditional Probability 

 
 

 

P A B
P A B

P B


  if   0P B  .  See Venn Diagram. 

Independent Events 

A is independent of B if and only if    P A B P A  

If we have multiple random variables then we can consider their Joint Distribution: the 
probability associated with each outcome in both sample spaces.  So a coin flip has a simple 
discrete distribution: a 50% chance of heads and a 50% chance of tails.  Flipping 2 coins gives a 
joint distribution: a 25% chance of both coming up heads, a 25% chance of both coming up 
tails, and a 50% chance of getting one head and one tail. 

The probability of multiple independent events is found by multiplying the probabilities 

of each event together.  So the chance of rolling two 6 on two dice is 
1 1 1

6 6 36
  .  The 

probability of getting to the computer lab on the 6th floor of NAC from the first floor, without 
having to walk up a broken escalator, can be found this way too.  Suppose the probability of an 

escalator not working is p ; then the probability of it working is  1 p  and the probability of 

five escalators each working is  
5

1 p .  So even if the probability of a breakdown is small (5%), 

still the probability of having every escalator work is just 

     
5

5 5 5 95
1 5% 95% 0.95 0.7738 77.38%

100

 
      

 
 so this implies that you'd expect to 

walk more than once a week. 



A simple representation of the joint distribution of two coin flips is a table: 

 coin 1 Heads coin 1 Tails 

coin 2 Heads H,H at 25% H,T at 25% 

coin 2 Tails T,H at 25% T,T at 25% 

Where, since the outcomes are independent, we can just multiply the probabilities. 

The Joint Distribution tells the probabilities of all of the different outcomes.  A Marginal 
Distribution answers a slightly different question: given some value of one of the variables, 
what are the probabilities of the other variables? 

When the variables are independent then the marginal distribution does not change 
from the joint distribution.  Consider a simple example of X and Y discrete variables.  X takes 
on values of 1 or 2 with probabilities of 0.6 and 0.4 respectively.  Y takes on values of 1, 2, or 3 
with probabilities of 0.5, 0.3, and 0.2 respectively.  So we can give a table like this: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 
probability 0.3 

(2,1) at 
probability 0.2 

 

Y=2 (30%) (1,2) at 
probability 0.18 

(2,2) at 
probability 0.12 

 

Y=3 (20%) (1,3) at 
probability 0.12 

(2,3) at 
probability 0.08 

 

    

On the assumption that X and Y are independent.  The probabilities in each box are 
found by multiplying the probability of each independent event. 

If instead we had the two variables, A and B, not being independent then we might 
have a table more like this: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) at 
probability 0.13 

 

B=2  (1,2) at 
probability 0.23 

(2,2) at 
probability 0.12 

 



B=3  (1,3) at 
probability 0.17 

(2,3) at 
probability 0.1 

 

    

We will examine the differences. 

If we add up the probabilities along either rows or columns then we get the marginal 
probabilities (which we write in the margins, appropriately enough).  Then we'd get: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 
probability 0.3 

(2,1) at 
probability 0.2 

0.5 

Y=2 (30%) (1,2) at 
probability 0.18 

(2,2) at 
probability 0.12 

0.3 

Y=3 (20%) (1,3) at 
probability 0.12 

(2,3) at 
probability 0.08 

0.2 

 0.6 0.4  

Which just re-states our assumption that the variables are independent – and shows 
that, where there is independence, the probability of either variable alone does not depend on 
the value that the other variable takes on.  In other words, knowing X does not give me any 
information about the value that Y will take on, and vice versa. 

If instead we do this for the A,B case we get: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) at 
probability 0.13 

0.38 

B=2  (1,2) at 
probability 0.23 

(2,2) at 
probability 0.12 

0.35 

B=3  (1,3) at 
probability 0.17 

(2,3) at 
probability 0.1 

0.27 

 0.65 0.35  

Where we double check that we've done it right by seeing that the sum of either of the 
marginals is equal to one (65% + 35% = 100% and 38% + 35% + 27% = 100%). 



So the marginal distributions sum the various ways that an outcome can happen.  For 
example, we can get A=1 in any of 3 ways: either (1,1), (1,2) or (1,3).  So we add the probabilities 
of each of these outcomes to find the total chance of getting A=1. 

But if we want to understand how A and B are related, it might be more useful to 
consider this as a prediction problem: would knowing the value that A takes on help me guess 
the value of B?  Would knowing the value that B takes on help me guess the value of A? 

These are abstract questions but they have vitally important real-life analogs.  In airport 
security, is the probability that someone is a terrorist independent of whether they are 
Muslim?  Is the probability that someone is pulled out of line for a thorough search 
independent of whether they are Muslim?  (The TSA might have different beliefs than you or me!)  In 
medicine, is the probability that someone gets cancer independent of whether they eat lots of 
vegetables?  In economics, is the probability that someone defaults on their mortgage 
independent of the mortgage originator (Fannie, Freddie, mortgage broker, bank)?  Is the 
probability of the country pulling out of recession independent of whether the Fed raises rates?  
In poker, if my opponent just raised the bid, what is the probability that her cards are better 
than mine? 

For these questions we want to find the conditional distribution: what is the probability 
of some outcome, given a particular value for some other random variable? 

Just from the phrasing of the question, you should be able to see that if the two 
variables are independent then the conditional distribution should not change from the 
marginal distribution – as is the case of X and Y.  Flipping a coin does not help me guess the 
outcome of a roll of the dice.  (Cheering in front of a sports game on TV does not affect the 
outcome, for another example – although plenty of people act as though they don't believe 
that!) 

How do we find the conditional distribution?  Take the value of the joint distribution 
and divide it by the marginal distribution of the relevant variable. 

For example, suppose we want to find the probability of B outcomes, conditional on 
A=1.  Since we know that A=1, there is no longer a 65% probability of A -- it happened.  So we 
divide each joint probability by 0.65 so that the sum will be equal to 1.  So the probabilities are 
now: 



 A=1  A=2   

B=1  (1,1) at 
probability 0.25/.65 

(2,1) at 
probability 0.13 

0.38 

B=2  (1,2) at 
probability 0.23/.65 

(2,2) at 
probability 0.12 

0.35 

B=3  (1,3) at 
probability 0.17/.65 

(2,3) at 
probability 0.1 

0.27 

 0.65/.65 0.35  

so now we get the conditional distribution: 

 A=1  A=2   

B=1  (1,1) @ 0.3846 (2,1) at 
probability 0.13 

0.38 

B=2  (1,2) @ 0.3538 (2,2) at 
probability 0.12 

0.35 

B=3  (1,3) @ 0.2615 (2,3) at 
probability 0.1 

0.27 

  0.35  

We could do the same to find the conditional distribution of B, given that A=2: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) @ 0.13/.35 
=.3714 

0.38 

B=2  (1,2) at 
probability 0.23 

(2,2) @ 
0.12/.35 = .3429 

0.35 

B=3  (1,3) at 
probability 0.17 

(2,3) @ 0.1/.35 
= .2857 

0.27 

 0.65   



These conditional probabilities are denoted as  Pr 2B A   for example.  We could find 

the expected value of B given that A equals 2, 2E B A   , just by multiplying the value of B 

by its probability of occurrence, so      2 1 .3714 2 .3429 3 .2857E B A         . 

We could find the conditional probabilities of A given B=1 or given B=2 or given B=3.  In 
those cases we would sum across the rows rather than down the columns. 

More pertinently, we can get crosstabs on two variables, for example the wage by 
education.  First I break wages into groups: less than $10,000 per year; then up to $50,000; up 
to $100,000; and greater than that.  The R-output (see working_on_PUMS_2.R for details) is:  
 No HS HS SmColl AS Bach Adv 

less than 10,000 56734 26279 17648 5167 9859 6684 

10,001 - 50,000 4806 13147 9440 5080 7983 4155 

50,001 - 100,000 538 3303 3250 2421 6380 5703 

100,001+ 78 380 592 370 2746 3571 

But these are raw numbers of people not fractions – so divide by the total number of 
observations (easy in Excel or can be done in R, depending on your preference); I also show the 
marginal: 

 No HS HS SmColl AS Bach Adv  Marginals 

less than 10,000 0.2890 0.1339 0.0899 0.0263 0.0502 0.0340  0.6233 

10,001 - 50,000 0.0245 0.0670 0.0481 0.0259 0.0407 0.0212  0.2272 

50,001 - 100,000 0.0027 0.0168 0.0166 0.0123 0.0325 0.0291  0.1100 

100,001+ 0.0004 0.0019 0.0030 0.0019 0.0140 0.0182  0.0394 

         

Marginals 0.3166 0.2196 0.1576 0.0664 0.1374 0.1025   

These numbers are rough to interpret; the conditionals might be easier.  So can ask, 
what is the likelihood of making particular levels of wage income, conditional on level of 
education?  This divides each proportion by its column sum, its marginal. Note each column 
sums to 1. 

Conditional on Education No HS HS SmColl AS Bach Adv 

less than 10,000 0.9128 0.6096 0.5706 0.3963 0.3656 0.3323 

10,001 - 50,000 0.0773 0.3050 0.3052 0.3896 0.2960 0.2066 

50,001 - 100,000 0.0087 0.0766 0.1051 0.1857 0.2366 0.2835 

100,001+ 0.0013 0.0088 0.0191 0.0284 0.1018 0.1775 

This shows that, of the people without a high school diploma, 91% have wage of 
$10,000 or less, while just 33% of people with an Advanced Degree make that little money.  On 
the opposite end, just about 1/10 of 1% of people without a high school diploma make over 
$100k, while nearly 18% of people with an Advanced Degree make more than $100k. 



The other conditional is asking, of people with wages above $100,000, what fraction 
have each degree?  That table is found by dividing each row by its sum: 

Conditional on Wage No HS HS SmColl AS Bach Adv 

less than 10,000 0.4636 0.2147 0.1442 0.0422 0.0806 0.0546 

10,001 - 50,000 0.1077 0.2947 0.2116 0.1139 0.1789 0.0931 

50,001 - 100,000 0.0249 0.1530 0.1505 0.1121 0.2954 0.2641 

100,001+ 0.0101 0.0491 0.0765 0.0478 0.3549 0.4615 

So this shows that, of people making more than $100,000 in wages, 46% of them have 
an Advanced Degree, another 35% have a Bachelor's Degree, while just 18% have fewer 
educational qualifications. 

Both of these conditioning sets help understand how education and wages are 
interrelated – there is not necessarily one better than the other. (Also, not all of these are 
working people – there are children, retirees, and others not in the workforce.  You can re-do 
the numbers for subsets, maybe people 25-55 would be a better choice?) 

Conditional probabilities can also be calculated with what is called Bayes' Theorem:  

 
   

 

P A B P B
P B A

P A


 . 

This can be understood by recalling the definition of conditional probability, 

 
 

 

P A B
P A B

P B


 , so  

 

 

P A B
P B A

P A


 , that the conditional probability equals the joint 

probability divided by the marginal probability. 

The power of Bayes' Theorem can be understood by thinking about medical testing.  
Suppose a genetic test screens for some disease with 99% accuracy.  Your test comes back 
positive – how worried should you be?   The surprising answer is not 99% worried; in fact often 
you might be more than likely to be healthy!  Suppose that the disease is rare so only 1 person 
in 1000 has it (so 0.1%).  So out of 1000 people, one person has the disease and the test is 99% 
likely to identify that person.  Out of the remaining 999 people, 1% will be misidentified as 
having the disease, so this is 9.99 – call it 10 people.  So eleven people will test positive but only 
one will actually have the disease so the probability of having the disease given that the test 

comes up positive,  P sick test  , is 
   

 

P test sick P sick

P test




= 

0.99 0.001
.099

0.01


 . 

The test is not at all useless – it has brought down an individual's likelihood of being sick 
by orders of magnitude, from one-tenth of one percent to ten percent.  But it's still not nearly 
as accurate as the "99%" label might imply. 



Many healthcare providers don't quite get this and explain it merely as "don't be too 
worried until we do further tests."  But this is one reason why broad-based tests can be very 
expensive and not very helpful.  These tests are much more useful if we first narrow down the 
population of people who might have the disease.  For example home pregnancy tests might 
be 99% accurate but if you randomly selected 1000 people to take the test, you'd find many 
false positives.  Some of those might be guys (!) or women who, for a variety of reasons, are 
not likely to be pregnant.  The test is only useful as one element of a screen that gets 
progressively finer and finer. 

Counting Rules 

If A can occur as N1 events and B can be N2 events then the sample space is 1 2N N  

(visualize a contingency table with N1 rows and N2 columns). 

Factorials: If there are N items then they can be arranged in 

       
1

0

! 1 2 1
N

i

N n n n N i




      ways. 

Permutations: n events that can occur in r items (where order is important) have a total 

of 
 

!

!

n
nPr

n r



 possible outcomes. 

Combinations: n events that can occur in r items (where order is not important) have 

 
!

! !

n
nCr

r n r



 possible outcomes – just the permutation divided by r! to take care of the 

multiple ways of ordering. 

So to apply these, consider computer passwords (see NYTimes article below).   

The article reports: 

Mr. Herley, working with Dinei Florêncio, also at Microsoft Research, 
looked at the password policies of 75 Web sites. ... They reported that the sites 
that allowed relatively weak passwords were busy commercial destinations, 
including PayPal, Amazon.com  and Fidelity Investments. The sites that insisted 
on very complex passwords were mostly government and university sites. What 
accounts for the difference? They suggest that “when the voices that advocate 
for usability are absent or weak, security measures become needlessly 
restrictive.”   

Consider the simple mathematics of why a government or university might want 
complex passwords.  How many permutations are possible if passwords are 6 numerical 
digits?  How many if passwords are 6 alphabetic or numeric characters?  If the 
characters are alphabetic, numeric, and fifteen punctuation characters (, . _ - ? ! @ # $ 



% ^ & * ' ")?  What if passwords are 8 characters?  If each login attempt takes 1/100 of a 
second, how many seconds of "brute-force attack" does it take to access the account on 
average?  If there is a penalty of 10 minutes after 3 unsuccessful login attempts, how 
long would it take to break in?  (Of course, the article notes, if password requirements 
are so arcane that employees put their passwords on a Post-It attached to the monitor, 
then the calculations above are irrelevant.) 

( for fun, here's another example of Joint/Marginal Distributions) 

Tiger Mother Amy Chua in WSJ, Jan 8, 2011 

A lot of people wonder how Chinese parents raise such stereotypically successful kids. They 
wonder what these parents do to produce so many math whizzes and music prodigies, what it's like inside the 

family, and whether they could do it too. Well, I can tell them, because I've done it. Here are some things my 
daughters, Sophia and Louisa, were never allowed to do: 

• attend a sleepover 

• have a playdate 

• be in a school play 

• complain about not being in a school play 

• watch TV or play computer games 

• choose their own extracurricular activities 

• get any grade less than an A 

• not be the No. 1 student in every subject except gym and drama 

• play any instrument other than the piano or violin 

• not play the piano or violin. 

I'm using the term "Chinese mother" loosely. I know some Korean, Indian, Jamaican, Irish and 
Ghanaian parents who qualify too. Conversely, I know some mothers of Chinese heritage, almost always 
born in the West, who are not Chinese mothers, by choice or otherwise. I'm also using the term "Western 
parents" loosely. Western parents come in all varieties. 

So you could go to PUMS and look at first-generation immigrants with parents 
from China, compare with other first-generation kids, see where are the Tiger Moms... 

  

http://online.wsj.com/article/SB10001424052748704111504576059713528698754.html


Lecture 2: Discrete and Continuous Random Variables 

For any discrete random variable, the mean or expected value is: 

   
1

N

i i

i

E X x P x


    

and the variance is 

    
22

1

N

i i

i

x P x 


   so the standard deviation is the square root. 

These can be described by PDF or CDF – probability density function or cumulative 
distribution function.  The PDF shows the probability of events; the CDF shows the cumulative 
probability of an event that is smaller than or equal to that event.  The PDF is the derivative of 
the CDF. 

Linear Transformations: 

 If Y aX b   then Y will have mean Y Xa b    and standard deviation 

Y Xa  . 

 If Z X Y   then Z X Y    ; 2 2 2Z X Y XY       (and if X and Y 

are independent then the covariance term drops out) 

WARNING: These statements DO NOT work for non-linear calculations!  The 
propositions above do NOT tell about when X and Y are multiplied and divided: the 

distributions of X Y  or X
Y

 are not easily found.  Nor is ln X , nor Xe .  We might wish 

for a magic wand to make these work out simply but they don't in general. 

Common Discrete Distributions: 

Uniform 

 depend on only upper and lower bound, so all events are in  ,a b  

 mean is 2

a b

; standard deviation is 

 
2

1 1

12

b a  

 

 Many null hypotheses are naturally formulated as stating that some 
distribution is uniform: e.g. stock picks, names and grades, birth month and sports 
success, etc. 



 
from: Barnett, Adrian G. (2010) The relative age effect in Australian Football League players. Working Paper. 

Although note that distribution of births is not quite uniform; certainly among animal 
species humans are unusual in that births are not overwhelmingly seasonal. 

Benford's Law: not really a law but an empirical result about measurements, that 
looking at the first digit, the value 1 is much more common than 9 – the first digit is not 
uniformly distributed.  Originally stated for tables of logarithms.  Second digit is closer to 
uniform; third digit closer still, etc.  See online Excel sheet.  This is a warning that sometimes 
our intuition about how we might think numbers are distributed is actually wrong. 

Question: Does the "shuffle" function on your music player distribute songs uniformly? 

Bernoulli 

 depend only on p, the probability of the event occurring 

 mean is p; standard deviation is  1p p  

o Where is the maximum standard deviation?  Intuition: what 
probability will give the most variation in yes/no answers?  Or use calculus; note 
that has same maximum as p(1 – p) so take derivative of that, set to zero.  Then hit 
your forehead with the palm of your hand, realizing that calculus gave you the 
same answer as simple intution. 

 Used for coin flips, dice rolls, events with "yes/no" answers: Was person 
re-employed after layoff? Did patient improve after taking the drug?  Did company pay 
out to investors from IPO? 

Binomial 

 have n Bernoulli trials; record how many were 1 not zero 

 np  ; 
 1np p  

  



o These formulas are easy to derive from rules of linear 
combinations.  If Bi are independent random variables with Bernoulli 
distributions, then what is the mean of B1 + B2?  What is its std dev? 

o What if this is expressed as a fraction of trials?  Derive.  

 what fraction of coin flips came up heads?  What fraction of people were 
re-employed

 after layoff?  What fraction of patients improved?  What fraction of 
companies offereed IPOs?

 

 questions about opinion polls – the famous "plus or minus 2 percentage 
points" 

o get margin of error depending on sample size (n) 
o from above, figure that mean of the fraction of people who agree 

or support some candidate is p, the true value, with standard error of 
 1p p

. 

Some students are a bit puzzled by two different sets of formulas for the 

binomial distribution – the standard deviation is listed as  1np p  and 
 1p p

n


.  

Which is it?! 

It depends on the units.  If we measure the number of successes in n trials, then 
we multiply by n.  If we measure the fraction of successes in n trials, then we don't 
multiply but divide. 

Consider a simple example: the probability of a hit is 50% so 

 
1 1 1 1

1
2 2 4 2

p p     .   If we have 10 trials and ask, how many are likely to hit, 

then this should be a different number than if we had 500 trials.  The standard error of 

the raw number of how many, of 10, hits we would expect to see, is 
1

10
2
  which is 

1.58, so with a 95% probability we would expect to see 5 hits, plus or minus 1.96*1.58 = 
3.1 so a range between 2 and 8.  If we had 500 trials then the raw number we'd expect to 

see is 250 with a standard error or 
1

500
2
 = 11.18 so the 95% confidence interval is 250 

plus or minus 22 so the range between 228 and 272.  This is a bigger range (in absolute 
value) but a smaller part of the fraction of hits. 

With 10 draws, we just figured out that the range of hits is (in fractions) from 0.2 
to 0.8.  With 500 draws, the range is from 0.456 to 0.544 – much narrower.  We can get 
these latter answers if we take the earlier result of standard deviations and divide by n.  

The difference in the formula is just this result, since 
1n

n n
 .  You could think of this 



as being analogous to the other "standard error of the average" formulas we learned, 
where you take the standard deviation of the original sample and divide by the square 
root of n. 

Poisson 

 model arrivals per time, assuming independent 

 depends only on   which is also mean 

 PDF is 
!

xe

x

 

 

 model how long each line at grocery store is, how cars enter traffic, how 
many insurance claims 

From Discrete to Continuous: an example of a very simple model (too simple) 

Use computer to create models of stock price movements.  What model?  How 
complicated is "enough"? 

Start really simple: Suppose the price were 100 today, and then each day thereafter it 
rises/falls by 10 basis points.  What is the distribution of possible stock prices, after a year (250 
trading days)? 

Use Excel (not even R for now!) 

First, set the initial price at 100; enter 100 into cell B2 (leaves room for labels).  Put 
the trading day number into column A, from 1 to 250 (shortcut).  In B1 put the label, "S". 

Then label column C as "up" and in C2 type the following formula, 

=IF(RAND()>0.5,1,0) 

The "RAND()" part just picks a random number between 0 and 1 (uniformly 
distributed).  If this is bigger than one-half then we call it "up"; if it's smaller then we call it 
"down".  So that is the "=IF(statement, value-if-true, value-if-false)" portion.  So it will return 
a 1 if the random number is bigger than one-half and zero if not. 

Then label column D as "down" and in D2 just type  

=1-C2 

Which simply makes it zero if "up" is 1 and 1 if "up" is 0. 

Then, in B3, put in the following formula, 

=B2*(1+0.001*(C2-D2)) 



Copy and paste these into the remaining cells down to 250. 

Of course this isn't very realistic but it's a start. 

Then plot the result (highlight columns A&B, then "Insert\Chart\XY (Scatter)"); here's 
one of mine: 

 

 

Here are 10 series (copied and pasted the whole S, "up," and "down" 10 times), see 
Excel sheet "Lecturenotes2". 

 

 

We're not done yet; we can make it better.  But the real point for now is to see the basic 
principle of the thing: we can simulate stock price paths as random trips. 
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The changes each day are still too regular – each day is 10 bps up or down; never 
constant, never bigger or smaller.  That's not a great model for the middle parts.  But the 
regularity within each individual series does not necessarily mean that the final prices (at step 
250) are all that unrealistic. 

I ran 2000 simulations; this is a histogram of the final price of the stock: 

 

(If you're confident with you R knowledge, try writing that code!) 

It shouldn't be a surprise that it looks rather normal (it is the result of a series of 
Bernoulli trials – that's what the Law of Large Numbers says should happen!). 

With computing power being so cheap (those 2000 simulations of 250 steps took a few 
seconds) these sorts of models are very popular (in their more sophisticated versions). 

It might seem more "realistic" if we thought of each of the 250 tics as being a portion of 
a day.  ("Realistic" is a relative term; there's a joke that economists, like artists, tend to fall in 
love with their models.) 

There are times (in finance for some option pricing models) when even this very simple 
model can be useful, because the fixed-size jump allows us to keep track of all of the possible 
evolutions of the price. 

But clearly it's important to understand Bernoulli trials summing to Binomial 
distributions converging to normal distributions. 



Continuous Random Variables 

The PDF and CDF 

Where discrete random variables would sum up probabilities for the individual 
outcomes, continuous random variables necessitate some more complicated math.  When X is 
a continuous random variable, the probability of it being equal to any particular value is zero  If 
X is continuous, there is a zero chance that it will be, say, 5 – it could be 4.99998 or 5.000001 
and so on.  But we can still take the area under the PDF by taking the limit of the sum, as the 
horizontal increments get smaller and smaller – the Riemann method, that you remember 
from Calculus.  So to find the probability of X being equal to a set of values we integrate the 
PDF between those values, so  

   
b

a

P a X b p x dx    . 

The CDF, the probability of observing a value less than some parameter, is therefore 

the integral with   as the lower limit of integration, so    
b

P X b p x dx


   . 

For this class you aren't required to use calculus but it's helpful to see why somebody 
might want to use it.  (Note that many of the statistical distributions we'll talk about come up in solving partial differential 

equations such as are commonly used in finance – so if you're thinking of a career in that direction, you'll want even more math!) 

Normal Distribution 

We will most often use the Normal Distribution – but usually the first question from 
students is "Why is that crazy thing normal?!!"  You're not the only one to ask.  Be patient, 

you'll see why; for now just remember  𝑒−𝑥
2
.  

In statistics it is often convenient to use a normal distribution, the bell-shaped 
distribution that arises in many circumstances.  It is useful because the (properly scaled) mean 
of independent random draws of many other statistical distributions will tend toward a normal 
distribution – this is the Central Limit Theorem.   

Some basic facts and notation: a normal distribution with mean µ and standard 

deviation  is denoted N(µ,).  (The variance is the square of the standard deviation, 2.)  The 

Standard Normal distribution is when µ=0 and =1; its probability density function (pdf) is 

denoted pdfN(x); the cumulative density function (CDF) is cdfN(x) or sometimes Nor(x).  This is 
a graph of the PDF (the height at any point) and CDF of the normal: 



 

Example of using normal distributions: 

A paper by Hansen, Sato, & Ruedy (2012) showed these decadal distributions of 
temperature anomalies: 



 

This shows the rightward spread of temperature deviations.  The x-axis is in standard 
deviations, which makes the various geographies easily comparable (a hot day in Alaska is 
different from a hot day in Oklahoma).  The authors define extreme heat as more than 3 
standard deviations above the mean and note that the probability of extreme heat days has 
risen from less than 1% to above 10%. 

One of the basic properties of the normal distribution is that, if X is distributed normally 

with mean µ and standard deviation , then Y = A + bX is also distributed normally, with mean 

(A + bµ) and standard deviation b.  We will use this particularly when we "standardize" a 

sample: by subtracting its mean and dividing by its standard deviation, the result should be 
distributed with mean zero and standard deviation 1.   

Oppositely, if we are creating random variables with a standard deviation, we can take 
random numbers with a N(0,1) distribution, multiply by the desired standard deviation, and 
add the desired mean, to get normal random numbers with any mean or standard deviation.  In 
Excel, you can create normally distributed random numbers by using the RAND() function to 
generate uniform random numbers on [0,1], then NORMSINV(RAND()) will produce standard-
normal-distributed random draws. 



Motivation: Sample Averages are Normally Distributed 

Before we do a long section on how to find areas under the normal distribution, I want 
to address the big question: Why we the heck would anybody ever want to know those?!?! 

Consider a case where we have a population of people and we sample just a few to 
calculate an average.  Before elections we hear about these types of procedures all of the time: 
a poll that samples just 1000 people is used to give information about how a population of 
millions of people will vote.  These polls are usually given with a margin of error ("54% of 
people liked Candidate A over B, with a margin of error of plus or minus 2 percentage points").  
If you don't know statistics then polls probably seem like magic.  If you do know statistics then 
polls are based on a few simple formulas. 

I have a dataset of about 206,639 people who reported their wage and salary to a 
particular government survey, the "Current Population Survey," the CPS.  The true average of 
their wage and salaries was $19,362.62.  (Not quite; the top income value is cut at $625,000 – people who made 

more are still just coded with that amount.  But don't worry about that for now.)  The standard deviation of the full 
206,639 people is 39,971.91. 

A histogram of the data shows that most people report zero (zero is the median value), 
which is reasonable since many of them are children or retired people.  However some report 
incomes up to $625,000! 

 

Taking an average of a population with such extreme values would seem to be difficult. 



Suppose that I didn't want to calculate an average for all 206,639 people – I'm lazy or 
I've got a real old and slow computer or whatever.  I want to randomly choose just 100 people 
and calculate the sample average.  Would that be "good enough"? 

Of course the first question is "good enough for what?" – what are we planning to do 
with the information?   

But we can still ask whether the answer will be very close to the true value.  In this case 
we know the true value; in most cases we won't.  But this allows us to take a look at how the 
sampling works. 

Here is a plot of values for 1000 different polls (each poll with just 100 people).   

 

We can see that, although there are a few polls with averages as low almost 10,000 and 
a few with averages as high as 30,000, most of the polls are close to the true mean of $19,363. 

In general the average of even a small sample is a good estimate of the true average 
value of the population.  While a sample might pick up some extreme values from one side, it is 
also likely to pick extreme values from the other side, which will tend to balance out. 

A histogram of the 1000 poll means is here: 



 

This shows that the distribution of the sample means looks like a Normal distribution – 
another case of how "normal" and ordinary the Normal distribution is. 

Of course the size of each sample, the number of people in each poll, is also important.  
Sampling more people gets us better estimates of the true mean. 

This graph shows the results from 100 polls, each with different sample sizes. 

 



In the first set of 100 polls, on the left, each poll has just 10 people in it, so the results 
are quite varied.  The next set has 20 people in each poll, so the results are closer to the true 
mean.  By the time we get to 100 people in each poll (102 on the log-scale x-axis), the variation 
in the polls is much smaller. 

Each distribution has a bell shape, but we have to figure out if there is a single invariant 
distribution or only a family of related bell-shaped curves. 

If we subtract the mean, then we can center the distribution around zero, with positive 
and negative values indicating distance from the center.  But that still leaves us with different 
scalings: as the graph above shows, the typical distance from the center gets smaller.  So we 
divide by its standard deviation and we get a "Standard Normal" distribution. 

The Standard Normal graph is: 

 

Note that it is symmetric around zero.  Like any histogram, the area beneath the curve 
is a measure of the probability.  The total area under the curve is exactly 1 (probabilities must 
add up to 100%).  We can use the known function to calculate that the area under the curve, 
from -1 to 1, is 68.2689%.  This means that just over 68% of the time, I will draw a value from 
within 1 standard deviation of the center.  The area of the curve from -2 to 2 is 95.44997%, so 
we'll be within 2 standard deviations over 95.45% of the time. 

It is important to be able to calculate areas under the Standard Normal.  For this reason 
people used to use big tables (statistics textbooks still have them); now we use computers.  But 
even the computers don't always quite give us the answer that we want, we have to be a bit 
savvy. 



So the normal CDF of, say, -1, is the area under the pdf of the points to the left of -1: 

 

This area is 15.87%.  How can I use this information to get the value that I earlier told 
you, that the area in between -1 and 1 is 68.2689%?  Well, we know two other things (more 
precisely, I know them and I wrote them just 3 paragraphs up, so you ought to know them).  
We know that the total area under the pdf is 100%.  And we know that the pdf is symmetric 
around zero.  This symmetry means that the area under the other tail, the area from +1 all the 
way to the right, is also 15.87%. 

 

So to find the area in between -1 and +1, I take 100% and subtract off the two tail areas: 



 

And this middle area is 100 – 15.87 – 15.87 = 68.26. 

Sidebar: you can think of all of this as "adding up" without calculus.  On the other hand, 
calculus makes this procedure much easier and we can precisely define the cdf as the integral, 

from negative infinity to some point Z, under the pdf: 
   

Z

cdf Z pdf x dx


 
. 

So with just this simple knowledge, you can calculate all sorts of areas using just the 
information in the CDF. 

Hints on using Excel or R to calculate the Standard Normal cdf 

Excel 

Excel has both normdist and normsdist.  For normdist, you need to tell it the 
mean and standard deviation, so use the function 

normdist(X,mean,stdev,cumulative).  For normsdist it assumes the mean is 
zero and standard deviation is one so you just use normsdist(X).  Read the help files to 

learn more.  The final argument of the normdist function, "Cumulative" is a true/false: if 
true then it calculates the cdf (area to the left of X); if false it calculates the pdf.  [Personally, that's 
an ugly and non-intuitive bit of coding, but then again, Microsoft has no sense of beauty.] 

To figure out the other way – what X value gives me some particular probability, we use 
norminv or normsinv. 



All of these commands are under "Insert" then "Function" then, under "Select 

a Category" choose "Statistical". 

Google 

Mistress Google knows all.  When I google "Normal cdf calculator" I get a link to 
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/normalcdf.html. This is a simple and 
easy interface: put in the z-value to get the probability area or the inverse.  Even ask Siri! 

R 

R has functions pnorm() and qnorm().  If you have a Z value and want to find the 

area under the curve to the left of that value, use pnorm(X).  If you don't tell it otherwise, it 

assumes mean is zero and standard deviation is one.  If you want other mean/stdev 
combinations, add those – so leaving them out is same as pnorm(X, mean = 0, sd = 
1) or change 0 and 1 as you wish.  If you have a probability and want to go backwards to find 

X, then use qnorm(p). 

Side Note: The basic property, that the distribution is normal whatever the time 
interval, is what makes the normal distribution {and related functions, called Lévy 
distributions} special.  Most distributions would not have this property so daily changes 
could have different distributions than weekly, monthly, quarterly, yearly, or whatever! 

Recall from calculus the idea that some functions are not differentiable in places – they 
take a turn that is so sharp that, if we were to approximate the slope of the function coming at 

it from right or left, we would get very different answers.  The function, y x , is an example: 

at zero the left-hand derivative is -1; the right-hand derivative is 1.  It is not differentiable at 
zero – it turns so sharply that it cannot be well approximated by local values.  But it is 
continuous – it can be continuous even if it is not differentiable. 

Now suppose I had a function that was everywhere continuous but nowhere 
differentiable – at every point it turns so sharply as to be unpredictable given past values.  
Various such functions have been derived by mathematicians, who call it a Wiener process; it 
generates Brownian motion.  (When Einstein visited CCNY in 1905 he discussed his paper using 
Brownian motion to explain the movements of tiny particles in water, that are randomly 
bumped around by water molecules.)  This function has many interesting properties – 
including an important link with the Normal distribution.  The Normal distribution gives just 
the right degree of variation to allow continuity – other distributions would not be continuous 
or would have infinite variance. 

Note also that a Wiener process has geometric form that is independent of scale or 
orientation – a Wiener process showing each day in the year cannot be distinguished from a 
Wiener process showing each minute in another time frame.  As we noted above, price 
changes for any time interval are normal, whether the interval is minutely, daily, yearly, or 
whatever.  These are fractals, curious beasts described by mathematicians such as Mandelbrot, 

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/normalcdf.html


because normal variables added together are still normal.  (You can read Mandelbrot's 1963 
paper in the Journal of Business, which you can download from JStor – he argues that Wiener 
processes are unrealistic for modeling financial returns and proposes further generalizations.) 

The Normal distribution has  a pdf which looks ugly but isn't so bad once you break it 

down.  It is proportional to 
2xe .  This is what gives it a bell shape: 

  

To make this a real probability we need to have all of its area sum up to one, so the 
probability density function (PDF) for a standard normal (with zero mean and standard 
deviation of one) is 
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To allow a mean, µ, different from zero and a standard deviation, σ, different from one, 
we modify the formula to this: 
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The connection with e is useful if it reminds you of when you learned about "natural 
logarithms" and probably thought "what the heck is 'natural' about that ugly thing?!"  But you 
learn that it comes up everywhere (think it's bad now? wait for differential equations!) and 
eventually make your peace with it.  So too the 'normal' distribution. 

If you think that the PDF is ugly then don't feel bad – its discoverer didn't like it either.  
Stigler's History of Statistics relates that Laplace first derived the function as the limit of a 
binomial distribution as n  but couldn't believe that anything so ugly could be true.  So he 
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put it away into a drawer until later when Gauss derived the same formula (from a different 
exercise) – which is why the Normal distribution is often referred to as "Gaussian".  The Normal 
distribution arises in all sorts of other cases: solutions to partial differential equations; in 
physics Maxwell used it to describe the diffusion of gases or heat (again Brownian motion; 
video here http://fuckyeahfluiddynamics.tumblr.com/post/56785675510/have-you-ever-noticed-how-motes-of-dust-seem-to); in 
information theory where it is connected to standard measures of entropy (Kullback Liebler); 
even in the distribution of prime factors in number theory, the Erdős–Kac Theorem. 

Finally I'll note the statistical quincunx, which is a great word since it sounds naughty 
but is actually geeky (google it or I'll try to get an online version to play in class). 
  

http://fuckyeahfluiddynamics.tumblr.com/post/56785675510/have-you-ever-noticed-how-motes-of-dust-seem-to


 


