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From Discrete to Continuous: an example of a very simple model (too simple) 

Use computer to create models of stock price movements.  What model?  How 
complicated is "enough"? 

Start really simple: Suppose the price were 100 today, and then each day thereafter it 
rises/falls by 10 basis points.  What is the distribution of possible stock prices, after a year (250 
trading days)? 

Use Excel (not even R for now!) 

First, set the initial price at 100; enter 100 into cell B2 (leaves room for labels).  Put 
the trading day number into column A, from 1 to 250 (shortcut).  In B1 put the label, "S". 

Then label column C as "up" and in C2 type the following formula, 

=IF(RAND()>0.5,1,0) 

The "RAND()" part just picks a random number between 0 and 1 (uniformly 
distributed).  If this is bigger than one-half then we call it "up"; if it's smaller then we call it 
"down".  So that is the "=IF(statement, value-if-true, value-if-false)" portion.  So it will return 
a 1 if the random number is bigger than one-half and zero if not. 

Then label column D as "down" and in D2 just type  

=1-C2 

Which simply makes it zero if "up" is 1 and 1 if "up" is 0. 

Then, in B3, put in the following formula, 

=B2*(1+0.001*(C2-D2)) 

Copy and paste these into the remaining cells down to 250. 

Of course this isn't very realistic but it's a start. 



Then plot the result (highlight columns A&B, then "Insert\Chart\XY (Scatter)"); here's 
one of mine: 

 

 

Here are 10 series (copied and pasted the whole S, "up," and "down" 10 times), see 
Excel sheet "Lecturenotes2". 

 

 

We're not done yet; we can make it better.  But the real point for now is to see the basic 
principle of the thing: we can simulate stock price paths as random trips. 

The changes each day are still too regular – each day is 10 bps up or down; never 
constant, never bigger or smaller.  That's not a great model for the middle parts.  But the 
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regularity within each individual series does not necessarily mean that the final prices (at step 
250) are all that unrealistic. 

I ran 2000 simulations; this is a histogram of the final price of the stock: 

 

(If you're confident with you R knowledge, try writing that code!) 

It shouldn't be a surprise that it looks rather normal (it is the result of a series of 
Bernoulli trials – that's what the Law of Large Numbers says should happen!). 

With computing power being so cheap (those 2000 simulations of 250 steps took a few 
seconds) these sorts of models are very popular (in their more sophisticated versions). 

It might seem more "realistic" if we thought of each of the 250 tics as being a portion of 
a day.  ("Realistic" is a relative term; there's a joke that economists, like artists, tend to fall in 
love with their models.) 

There are times (in finance for some option pricing models) when even this very simple 
model can be useful, because the fixed-size jump allows us to keep track of all of the possible 
evolutions of the price. 

But clearly it's important to understand Bernoulli trials summing to Binomial 
distributions converging to normal distributions. 



Continuous Random Variables 

The PDF and CDF 

Where discrete random variables would sum up probabilities for the individual 
outcomes, continuous random variables necessitate some more complicated math.  When X is 
a continuous random variable, the probability of it being equal to any particular value is zero  If 
X is continuous, there is a zero chance that it will be, say, 5 – it could be 4.99998 or 5.000001 
and so on.  But we can still take the area under the PDF by taking the limit of the sum, as the 
horizontal increments get smaller and smaller – the Riemann method, that you remember 
from Calculus.  So to find the probability of X being equal to a set of values we integrate the 
PDF between those values, so  

   
b

a

P a X b p x dx    . 

The CDF, the probability of observing a value less than some parameter, is therefore 

the integral with   as the lower limit of integration, so    
b

P X b p x dx


   . 

For this class you aren't required to use calculus but it's helpful to see why somebody 
might want to use it.  (Note that many of the statistical distributions we'll talk about come up in solving partial differential 

equations such as are commonly used in finance – so if you're thinking of a career in that direction, you'll want even more math!) 

Normal Distribution 

We will most often use the Normal Distribution – but usually the first question from 
students is "Why is that crazy thing normal?!!"  You're not the only one to ask.  Be patient, 

you'll see why; for now just remember  𝑒−𝑥
2

.  

In statistics it is often convenient to use a normal distribution, the bell-shaped 
distribution that arises in many circumstances.  It is useful because the (properly scaled) mean 
of independent random draws of many other statistical distributions will tend toward a normal 
distribution – this is the Central Limit Theorem.   

Some basic facts and notation: a normal distribution with mean µ and standard 

deviation  is denoted N(µ,).  (The variance is the square of the standard deviation, 2.)  The 

Standard Normal distribution is when µ=0 and =1; its probability density function (pdf) is 

denoted pdfN(x); the cumulative density function (CDF) is cdfN(x) or sometimes Nor(x).  This is 
a graph of the PDF (the height at any point) and CDF of the normal: 



 

Example of using normal distributions: 

A paper by Hansen, Sato, & Ruedy (2012) showed these decadal distributions of 
temperature anomalies: 



 

This shows the rightward spread of temperature deviations.  The x-axis is in standard 
deviations, which makes the various geographies easily comparable (a hot day in Alaska is 
different from a hot day in Oklahoma).  The authors define extreme heat as more than 3 
standard deviations above the mean and note that the probability of extreme heat days has 
risen from less than 1% to above 10%. 

One of the basic properties of the normal distribution is that, if X is distributed normally 

with mean µ and standard deviation , then Y = A + bX is also distributed normally, with mean 

(A + bµ) and standard deviation b.  We will use this particularly when we "standardize" a 

sample: by subtracting its mean and dividing by its standard deviation, the result should be 
distributed with mean zero and standard deviation 1.   

Oppositely, if we are creating random variables with a standard deviation, we can take 
random numbers with a N(0,1) distribution, multiply by the desired standard deviation, and 
add the desired mean, to get normal random numbers with any mean or standard deviation.  In 
Excel, you can create normally distributed random numbers by using the RAND() function to 
generate uniform random numbers on [0,1], then NORMSINV(RAND()) will produce standard-
normal-distributed random draws. 



Motivation: Sample Averages are Normally Distributed 

Before we do a long section on how to find areas under the normal distribution, I want 
to address the big question: Why we the heck would anybody ever want to know those?!?! 

Consider a case where we have a population of people and we sample just a few to 
calculate an average.  Before elections we hear about these types of procedures all of the time: 
a poll that samples just 1000 people is used to give information about how a population of 
millions of people will vote.  These polls are usually given with a margin of error ("54% of 
people liked Candidate A over B, with a margin of error of plus or minus 2 percentage points").  
If you don't know statistics then polls probably seem like magic.  If you do know statistics then 
polls are based on a few simple formulas. 

I have a dataset of about 206,639 people who reported their wage and salary to a 
particular government survey, the "Current Population Survey," the CPS.  The true average of 
their wage and salaries was $19,362.62.  (Not quite; the top income value is cut at $625,000 – people who made 

more are still just coded with that amount.  But don't worry about that for now.)  The standard deviation of the full 
206,639 people is 39,971.91. 

A histogram of the data shows that most people report zero (zero is the median value), 
which is reasonable since many of them are children or retired people.  However some report 
incomes up to $625,000! 

 

Taking an average of a population with such extreme values would seem to be difficult. 



Suppose that I didn't want to calculate an average for all 206,639 people – I'm lazy or 
I've got a real old and slow computer or whatever.  I want to randomly choose just 100 people 
and calculate the sample average.  Would that be "good enough"? 

Of course the first question is "good enough for what?" – what are we planning to do 
with the information?   

But we can still ask whether the answer will be very close to the true value.  In this case 
we know the true value; in most cases we won't.  But this allows us to take a look at how the 
sampling works. 

Here is a plot of values for 1000 different polls (each poll with just 100 people).   

 

We can see that, although there are a few polls with averages as low almost 10,000 and 
a few with averages as high as 30,000, most of the polls are close to the true mean of $19,363. 

In general the average of even a small sample is a good estimate of the true average 
value of the population.  While a sample might pick up some extreme values from one side, it is 
also likely to pick extreme values from the other side, which will tend to balance out. 

A histogram of the 1000 poll means is here: 



 

This shows that the distribution of the sample means looks like a Normal distribution – 
another case of how "normal" and ordinary the Normal distribution is. 

Of course the size of each sample, the number of people in each poll, is also important.  
Sampling more people gets us better estimates of the true mean. 

This graph shows the results from 100 polls, each with different sample sizes. 

 



In the first set of 100 polls, on the left, each poll has just 10 people in it, so the results 
are quite varied.  The next set has 20 people in each poll, so the results are closer to the true 
mean.  By the time we get to 100 people in each poll (102 on the log-scale x-axis), the variation 
in the polls is much smaller. 

Each distribution has a bell shape, but we have to figure out if there is a single invariant 
distribution or only a family of related bell-shaped curves. 

If we subtract the mean, then we can center the distribution around zero, with positive 
and negative values indicating distance from the center.  But that still leaves us with different 
scalings: as the graph above shows, the typical distance from the center gets smaller.  So we 
divide by its standard deviation and we get a "Standard Normal" distribution. 

The Standard Normal graph is: 

 

Note that it is symmetric around zero.  Like any histogram, the area beneath the curve 
is a measure of the probability.  The total area under the curve is exactly 1 (probabilities must 
add up to 100%).  We can use the known function to calculate that the area under the curve, 
from -1 to 1, is 68.2689%.  This means that just over 68% of the time, I will draw a value from 
within 1 standard deviation of the center.  The area of the curve from -2 to 2 is 95.44997%, so 
we'll be within 2 standard deviations over 95.45% of the time. 

It is important to be able to calculate areas under the Standard Normal.  For this reason 
people used to use big tables (statistics textbooks still have them); now we use computers.  But 
even the computers don't always quite give us the answer that we want, we have to be a bit 
savvy. 



So the normal CDF of, say, -1, is the area under the pdf of the points to the left of -1: 

 

This area is 15.87%.  How can I use this information to get the value that I earlier told 
you, that the area in between -1 and 1 is 68.2689%?  Well, we know two other things (more 
precisely, I know them and I wrote them just 3 paragraphs up, so you ought to know them).  
We know that the total area under the pdf is 100%.  And we know that the pdf is symmetric 
around zero.  This symmetry means that the area under the other tail, the area from +1 all the 
way to the right, is also 15.87%. 

 

So to find the area in between -1 and +1, I take 100% and subtract off the two tail areas: 



 

And this middle area is 100 – 15.87 – 15.87 = 68.26. 

Sidebar: you can think of all of this as "adding up" without calculus.  On the other hand, 
calculus makes this procedure much easier and we can precisely define the cdf as the integral, 

from negative infinity to some point Z, under the pdf: 
   

Z

cdf Z pdf x dx


 
. 

So with just this simple knowledge, you can calculate all sorts of areas using just the 
information in the CDF. 

Hints on using Excel or R to calculate the Standard Normal cdf 

Excel 

Excel has both normdist  and normsdist .  For normdist , you need to tell it the 
mean and standard deviation, so use the function 

normdist(X,mean,stdev,cumulative) .  For normsdist  it assumes the mean is 
zero and standard deviation is one so you just use normsdist(X) .  Read the help files to 
learn more.  The final argument of the normdist  function, "Cumulative " is a true/false: if 
true then it calculates the cdf (area to the left of X); if false it calculates the pdf.  [Personally, that's 

an ugly and non-intuitive bit of coding, but then again, Microsoft has no sense of beauty.] 

To figure out the other way – what X value gives me some particular probability, we use 
norminv  or normsinv . 



All of these commands are under "Insert " then "Function " then, under "Select 
a Category " choose "Statistical ". 

Google 

Mistress Google knows all.  When I google "Normal cdf calculator" I get a link to 
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/normalcdf.html. This is a simple and 
easy interface: put in the z-value to get the probability area or the inverse.  Even ask Siri! 

R 

R has functions pnorm() and qnorm().  If you have a Z value and want to find the 
area under the curve to the left of that value, use pnorm(X).  If you don't tell it otherwise, it 
assumes mean is zero and standard deviation is one.  If you want other mean/stdev 
combinations, add those – so leaving them out is same as pnorm(X, mean = 0, sd = 

1) or change 0 and 1 as you wish.  If you have a probability and want to go backwards to find 
X, then use qnorm(p). 

Side Note: The basic property, that the distribution is normal whatever the time 
interval, is what makes the normal distribution {and related functions, called Lévy 
distributions} special.  Most distributions would not have this property so daily changes 
could have different distributions than weekly, monthly, quarterly, yearly, or whatever! 

Recall from calculus the idea that some functions are not differentiable in places – they 
take a turn that is so sharp that, if we were to approximate the slope of the function coming at 

it from right or left, we would get very different answers.  The function, y x , is an example: 

at zero the left-hand derivative is -1; the right-hand derivative is 1.  It is not differentiable at 
zero – it turns so sharply that it cannot be well approximated by local values.  But it is 
continuous – it can be continuous even if it is not differentiable. 

Now suppose I had a function that was everywhere continuous but nowhere 
differentiable – at every point it turns so sharply as to be unpredictable given past values.  
Various such functions have been derived by mathematicians, who call it a Wiener process; it 
generates Brownian motion.  (When Einstein visited CCNY in 1905 he discussed his paper using 
Brownian motion to explain the movements of tiny particles in water, that are randomly 
bumped around by water molecules.)  This function has many interesting properties – 
including an important link with the Normal distribution.  The Normal distribution gives just 
the right degree of variation to allow continuity – other distributions would not be continuous 
or would have infinite variance. 

Note also that a Wiener process has geometric form that is independent of scale or 
orientation – a Wiener process showing each day in the year cannot be distinguished from a 
Wiener process showing each minute in another time frame.  As we noted above, price 
changes for any time interval are normal, whether the interval is minutely, daily, yearly, or 
whatever.  These are fractals, curious beasts described by mathematicians such as Mandelbrot, 

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/normalcdf.html


because normal variables added together are still normal.  (You can read Mandelbrot's 1963 
paper in the Journal of Business, which you can download from JStor – he argues that Wiener 
processes are unrealistic for modeling financial returns and proposes further generalizations.) 

The Normal distribution has  a pdf which looks ugly but isn't so bad once you break it 

down.  It is proportional to 
2xe .  This is what gives it a bell shape: 

  

To make this a real probability we need to have all of its area sum up to one, so the 
probability density function (PDF) for a standard normal (with zero mean and standard 
deviation of one) is 
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To allow a mean, µ, different from zero and a standard deviation, σ, different from one, 
we modify the formula to this: 
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The connection with e is useful if it reminds you of when you learned about "natural 
logarithms" and probably thought "what the heck is 'natural' about that ugly thing?!"  But you 
learn that it comes up everywhere (think it's bad now? wait for differential equations!) and 
eventually make your peace with it.  So too the 'normal' distribution. 

If you think that the PDF is ugly then don't feel bad – its discoverer didn't like it either.  
Stigler's History of Statistics relates that Laplace first derived the function as the limit of a 
binomial distribution as n  but couldn't believe that anything so ugly could be true.  So he 
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put it away into a drawer until later when Gauss derived the same formula (from a different 
exercise) – which is why the Normal distribution is often referred to as "Gaussian".  The Normal 
distribution arises in all sorts of other cases: solutions to partial differential equations; in 
physics Maxwell used it to describe the diffusion of gases or heat (again Brownian motion; 
video here http://fuckyeahfluiddynamics.tumblr.com/post/56785675510/have-you-ever-noticed-how-motes-of-dust-seem-to); in 
information theory where it is connected to standard measures of entropy (Kullback Liebler); 
even in the distribution of prime factors in number theory, the Erdős–Kac Theorem. 

Finally I'll note the statistical quincunx, which is a great word since it sounds naughty 
but is actually geeky (google it or I'll try to get an online version to play in class). 
  



 

Lecture 3: Is That Big? 

Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 

Students will be able to: 

 define the standard normal distribution, explain how to standardize a random variable, and 
calculate and interpret probabilities using the standard normal distribution; 

The sample average has a normal distribution.  This is hugely important for two 
reasons: one, it allows us to estimate a parameter, and two, because it allows us to start to get 
a handle on the world and how we might be fooled.   

Get a central parameter 

The basic idea is that if we take the average of some sample of data, this average 
should be a good estimate of the true mean.  For many beginning students this idea is so basic 
and obvious that you never think about when it is a reasonable assumption and when it might 
not be.  For example, one of the causes of the Financial Crisis was that many of the 'quants' 
(the quantitative modelers) used overly-optimistic models that didn't seriously take account of 
the fact that financial prices can change dramatically.  Most financial returns are not normally 
distributed!  But we'll get more into that later; for now just remember this assumption.  Later 
we'll talk about things like bias and consistency. 

Return to question (back in Review of R) of whether the difference in gender by 
borough is a "big" difference.  Could run R to make random cuts of the data, find difference in 
fractions in each, then put the actual observed difference into a histogram.  This is 
working_on_PUMS_3.R.  

The next step is to ask, "do I have to do thousands of simulations every time?"  Answer: 
"No, that's the power of stats!"  Rather than doing a lot of simulations you can just find a 
formula.  Sure the formula is a bit ugly but you've seen the program, it's not so easy either. 

Variation around central mean 

Knowing that the sample average has a normal distribution also helps us specify the 
variation involved in the estimation.  We often want to look at the difference between two 
sample averages, since this allows us to tell if there is a useful categorization to be made: are 
there really two separate groups?  Or do they just happen to look different? 

How can we try to guard against seeing relationships where, in fact, none actually 
exist? 

To answer this question we must think like statisticians.  To "think like a statistician" is 
to do mental handstands; it often seems like looking at the world upside-down.  But as you get 



used to it, you'll discover how valuable it is.  (There is another related question: "What if there 
really is a relationship but we don't find evidence in the sample?"  We'll get to that.) 

The first step in "thinking like a statistician" is to ask, What if there were actually no 
relationship;  zero difference?  What would we see? 

Consider two random variables, X and Y; we want to see if there is a difference in mean 

between them.  We know that the sample averages are distributed normally so both X  and Y  
are distributed normally.  We know additionally that linear functions of normal distributions 

are normal as well, so  X Y  is distributed normally.    If there were no difference in the 

means of the two variables then  X Y  would have a true mean of zero; 0
X Y



 .  But we 

are not likely to ever see a sample mean of exactly zero!  Sometimes we will probably see a 
positive number, sometimes a negative.  How big of a difference would convince us?  A big 
difference would be evidence in favor of different means; a small difference would be evidence 
against.  But, in the phrase of Dierdre McCloskey, "How big is big?" 

Let's do an example.  X and Y are both distributed normally but with a moderate error 
relative to their mean (a modest signal-to-noise ratio), so X~N(10,3) and Y~N(12,3), with 50 
observations.  I demonstrate in the program, normal_example.R. 

In our sample the difference is 0.865;  X Y =-.865.  It's not 2 exactly, nor would we 

expect it to be! 

A histogram of these differences shows: 

  



 Now we consider a rather strange thing: suppose that there were actually zero 
difference – what might we see?  What if we look at 1000 repetitions of a sample of 50 
observations of X and Y? 

A histogram of 1000 possible samples in the case where there was no difference shows 
this: 

 

So a difference of -0.865 is smaller than all but 75 of the 1000 random tries.  We can say 
that, if there were actually no difference between X and Y, we would get something from the 
range of values above.  Since we actually estimated -0.865, which is smaller than 75 of 1000, we 
could say that "there is just a 7.5% chance that X and Y could really have no difference but we'd 
see such a small value." 

Law of Large Numbers 

Probability and Statistics have many complications with twists and turns, but it all 
comes down to just a couple of simple ideas.  These simple ideas are not necessarily intuitive – 
they're not the sort of things that might, at first, seem obvious.  But as you get used to them, 
they'll become your friend. 

With computers we can take much of the complicated formulas and derivations and 
just do simple experiments.  Of course an experiment cannot replace a formal proof, but for 
the purposes of this course you don't need to worry about a formal proof. 

One basic idea of statistics is the "Law of Large Numbers" (LLN).  The LLN tells us that 
certain statistics (like the average) will very quickly get very close to the true value, as the size 
of the random sample increases.  This means that if I want to know, say, the fraction of people 



who are right-handed or left-handed, or the fraction of people who will vote for Politician X 
versus Y, I don't need to talk with every person in the population. 

This is strenuously counter-intuitive.  You often hear people complain, "How can the 
pollsters claim to know so much about voting?  They never talked to me!"  But they don't have 
to talk to everyone; they don't even have to talk with very many people.  The average of a 
random sample will "converge" to the true value in the population, as long as a few simple 
assumptions are satisfied. 

Instead of a proof, how about an example?  Open an Excel spreadsheet (or OpenOffice 
Calc, if you're an open-source kid).  We are going to simulate the number of people who prefer 
politician X to Y.  And we'll give R a break because for some people that's just too close to 
magic. 

We can do this example because Excel has a simple function, RAND(), which picks a 
random number between 0 and 1.  So in the first cell,A1, I type "=RAND()".  I'm going to pick a 
fraction, 45% -- meaning that I will assume that politician X is supported by 45% of the 
population; in Excel this means that I will write, in cell B1, " =IF(A1<0.45,1,0)".  [Excel has some 
of the most ponderous inelegant programming on the planet; this "IF" statement first gives the 
condition, "A1 < 0.45", that is to be determined to be either true or false, then after the comma 
"1" tells it to show the value 1 if true, then after the comma the "0" tells it to show the value 0 if 
false.] 

Assume that there are 1000 people in the population, so copy and paste the contents of 
cells A1 and B1 down to all of the cells A2 through A1000 and B2 through B1000.  Now this 
gives us 1000 people, who are randomly assigned to prefer either politician X or Y.  In B1001 
you can enter the formula "=SUM(B1:B1000)" which will find out how many people (of 1000) 
who would vote for Politician X.  Go back to cell C1 and enter the formula "=B1001/1000" – this 
tells you the fraction of people who are actually backing X (not quite equal to the percentage 
that you set at the beginning, but close). 

Next suppose that we did a survey and randomly selected just 30 people for our poll.  
We know that we won't get the exact right answer, but we want to know "How inaccurate is 
our answer likely to be?"  We can figure that out; again with some formulas or with some 
computing power. 

For my example (shown in the spreadsheet, samples_for_polls.xls) I first randomly 
select one of the people in the population with the formula, in cell A3, 
=ROUND(1+RAND()*999,0).  This takes a random number between 0 and 1 (RAND()), 
multiplies it by 999 so that I will have a random number between 0 and 999, then adds 1 to get 
a random number between 1 and 1000.  Then it rounds it off to be an integer (that's the 
=ROUND( ,0) part).   

Next in B3 I write the formula, 
=INDIRECT(CONCATENATE("population!B",A3)).  The inner part, 



CONCATENATE("population!B",A3), takes the random number that we generated in 
column A and makes it into a cell reference.  So if the random number is 524 then this makes a 
cell address, population!B524.  Then the =INDIRECT(population!B524) tells Excel to 
operate on it as if it were a cell address and return the value in B524 or the worksheet that I 
labeled "population". 

On the worksheet I then copied these formulas down from A2 to B32 to get a poll of the 
views of 30 randomly-selected people.  Then cell B1 gets the formula, =SUM(B3:B32)/30.  
This tells me what fraction of the poll support the candidate, if the true population has 45% 
support.  I copied these columns five times to create 5 separate polls.  When I ran it (the 
answers will be different for you), I got 4 polls showing less than 50% support (in a vote, that's 
the relevant margin) and 1 showing more than 50% support, with a rather wide range of values 
from 26% to 50%.  (If you hit "F9" you will get a re-calculation, which takes a new bunch of 
random numbers.) 

Clearly just 30 people is not a great poll;  a larger poll would be more accurate.  (Larger 
polls are also more expensive so polling organizations need to strategize to figure out where 
the marginal cost of another person in the poll equals the marginal benefit.) 

In the problem set, you will be asked to do some similar calculations.  If you have some 
basic computer programming background then you can use a more sophisticated program to 
do it (to create histograms and other visuals, perhaps).  Excel is a donkey – it does the task but 
slowly and inelegantly. 

So we can formulate many different sorts of questions once we have this figured out. 

First the question of polls: if we poll 500 people to figure out if they approve or 
disapprove of the President, what will be the standard error?   

With some math ( ) we can figure out a formula for the standard error of the sample 
average.  It is just the standard deviation of the sample divided by the square root of the 
sample size.  So the sample average is distributed normally with mean of µ and standard error 

of sse
N

 .  This is sometimes written compactly as ~ ,
s

X N
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Sometimes this causes confusion because in calculating the standard error, s, we 

divided by the square root of (N-1), since 
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, so it seems you're dividing twice.  

But this is correct: the first division gets us an estimate of the sample's standard deviation; the 
second division by the square root of N gets us the estimate of the sample average's standard 
error. 



The standardized test statistic (sometimes called Z-score since Z will have a standard 

normal distribution) is the mean divided by its standard error, 
X X X

N
sse s

N

  .  This 

shows clearly that a larger sample size (bigger N) amplifies differences of X  from zero (the 
usual null hypothesis).  A small difference, with only a few observations, could be just chance; a 
small difference, sustained over many observations, is less likely to be just chance. 

One of the first things to note about this formula is that, as N rises (as the sample gets 
larger) the standard error gets smaller – the estimator gets more precise.  So if N could rise 
towards infinity then the sample average would converge to the true mean; we write this as 

p
X   where the 

p
  means "converges in probability as N goes toward infinity". 

So the sample average is unbiased.  This simply means that it gets closer and closer to 
the true value as we get more observations.  Generally "unbiased" is a good thing, although 
later we'll discuss tradeoffs between bias and variance. 

Return to the binomial distribution, and its normal approximation.  We know that std 
error has its maximum when p= ½, so if we put in p=0.5 then the standard error of a poll is, at 

worst, 
1

2 n
, so more observations give a better approximation.  See Excel sheet 

poll_examples.  We'll return to this once we learn a bit more about the standard error of means. 

 A bit of Math: 

We want to use our basic knowledge of linear combinations of normally-distributed 
variables to show that, if a random variable, X, comes from a normal distribution then its 
average will have a normal distribution with the same mean and the standard deviation of the 
sample divided by the square root of the sample size, 

~ ,
s

X N
N


 
 
 

. 

The formula for the average is 
1

1 n

i

i

X X
n 

  .  Consider first a case where there are just 2 

observations.  This case looks very similar to our rule about, if W CX DY  , then 

 2 2 2 2~ , 2X Y X Y XYW N C D C D CD       .  With N=2, this is 
1 2

1 1

2 2
X X X  , which has 

mean 
1 2

1 1

2 2
X X  , and since each X observation comes from the same distribution then 

1 2X X   so the mean is X  (it's unbiased).  You can work it out when there are n  

observations. 



Now the standard error of the mean is 
2 2

2 2 2 2 2 2

1 2 1 2 1 2

1 1 1 1 1 1 1
2

2 2 2 2 4 4 2
X X XY X X X X      

      
           

      
.  The covariance is 

zero because we assume that we're making a random sample.   Again since they come from 

the same distribution, 1 2X X   , the standard error is 

2 2 2 21 1 2 2 1
2

2 2 2 2 2
X X X X X X          . 

With n observations, the mean works out the same and the standard error of the 

average is 
2

2 2 2

2 2
1 1

1 1n n
X

x x x
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Hypothesis Testing 

Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 

Students will be able to: 

 construct and interpret a confidence interval for a normally distributed random variable, and 
determine the probability that a normally distributed random variable lies inside a given confidence interval; 

 define the standard normal distribution, explain how to standardize a random variable, and 
calculate and interpret probabilities using the standard normal distribution; 

 explain the construction of confidence intervals; 

 define a hypothesis, describe the steps of hypothesis testing, interpret and discuss the choice of 
the null hypothesis and alternative hypothesis, and distinguish between one-tailed and two-tailed tests of 
hypotheses; 

 define and interpret a test statistic, a Type I and a Type II error, and a significance level, and 
explain how significance levels are used in hypothesis testing; 

Hypothesis Testing 

One of the principal tasks facing the statistician is to perform hypothesis tests.  These 
are a formalization of the most basic questions that people ask and analyze every day – just 
contorted into odd shapes.  But as long as you remember the basic common sense underneath 
them, you can look up the precise details of the formalization that lays on top. 

The basic question is "How likely is it, that I'm being fooled?"  Once we accept that the 
world is random (rather than a manifestation of some god's will), we must decide how to make 
our decisions, knowing that we cannot guarantee that we will always be right.  There is some 
risk that the world will seem to be one way, when actually it is not.  The stars are strewn 
randomly across the sky but some bright ones seem to line up into patterns.  So too any data 
might sometimes line up into patterns. 

A formal hypothesis sets a mathematical condition that I want to test.  Often this 
condition takes the form of some parameter being zero for no relationship or no difference. 

Statisticians tend to stand on their heads and ask: What if there were actually no 
relationship?  (Usually they ask questions of the form, "suppose the conventional wisdom were 
true?")  This statement, about "no relationship," is called the Null Hypothesis, sometimes 
abbreviated as H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We 
know that there is some probability that nature will fool me, that it will seem as though there is 
a relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?" 



The "likelihood that I'm being fooled" is the p-value. 

For a scientific experiment we typically first choose the level of certainty that we desire.  
This is called the significance level.  This answers, "How low does the p-value have to be, for 
me to accept the formal hypothesis?"  To be fair, it is important that we set this value first 
because otherwise we might be biased in favor of an outcome that we want to see.  By 
convention, economists typically use 10%, 5%, and 1%; 5% is the most common. 

A five percent level of a test is conservative, it means that we want to see so much 
evidence that there is only a 5% chance that we could be fooled into thinking that there's 
something there, when nothing is actually there.  Five percent is not perfect, though – it still 
means that of every 20 tests where I decide that there is a relationship there, it is likely that I'm 
being fooled in one of those – I'm seeing a relationship where there's nothing there. 

To help ourselves to remember that we can never be truly certain of our judgment of a 
test, we have a peculiar language that we use for hypothesis testing.  If the "likelihood that I'm 
being fooled" is less than 5% then we say that the data allow us to reject the null hypothesis.  If 
the "likelihood that I'm being fooled" is more than 5% then the data do not reject the null 
hypothesis. 

Note the formalism: we never "accept" the null hypothesis.  Why not?  Suppose I were 
doing something like measuring a piece of machinery, which is supposed to be a centimeter 
long.  The null hypothesis is that it is not defective and so is one centimeter in length.  If I 
measure with a ruler I might not find any difference to the eye.  So I cannot reject the 
hypothesis that it is one centimeter.  But if I looked with a microscope I might find that it is not 
quite one centimeter!  The fact that, with my eye, I don't see any difference, does not imply 
that a better measurement could not find any difference.  So I cannot say that it is truly exactly 
one centimeter; only that I can't tell that it isn't. 

So too with statistics.  If I'm looking to see if some portfolio strategy produces higher 
returns, then with one month of data I might not see any difference.  So I would not reject the 
null hypothesis (that the new strategy is no improvement).  But it is possible that the new 
strategy, if carried out for 100 months or 1000 months or more might show some tiny 
difference. 

Not rejecting the null is saying that I'm not sure that I'm not being fooled.  (Read that 
sentence again; it's not immediately clear but it's trying to make a subtle and important point.) 

To summarize, Hypothesis Testing asks, "What is the chance that I would see the value 
that I've actually got, if there truly were no relationship?"  If this p-value is lower than 5% then I 
reject the null hypothesis of "no relationship."  If the p-value is greater than 5% then I do not 
reject the null hypothesis of "no relationship." 

The rest is mechanics. 



The null hypothesis would tell that a parameter has some particular value, say  zero: 

0 : 0H   ; the alternative hypothesis is : 0AH   .  Under the null hypothesis the parameter 

has some distribution (often normal), so  0 : ~ 0, std errH N  .  Generally we have an estimate 

for std err , which is se  (for small samples this inserts additional uncertainty).  So I know that, 

under the null hypothesis, 
se


 has a standard normal distribution (mean of zero and standard 

deviation of one).  I know exactly what this distribution looks like, it's the usual bell-shaped 
curve: 

 

So from this I can calculate, "What is the chance that I would see the value that I've 
actually got, if there truly were no relationship?," by asking what is the area under the curve 
that is farther away from zero than the value that the data give.  (I still don't know what value 
the data will give!  I can do all of this calculation beforehand.) 

Any particular estimate of   is generally going to be X .  So the test statistic is formed 

with 
X

se
. 

Looking at the standard normal pdf, a value of the test statistic of 1.5 would not meet 
the 5% criterion (go back and calculate areas under the curve).  A value of 2 would meet the 5% 
criterion, allowing us to reject the null hypothesis.  For a 5% significance level, the standard 
normal critical value is 1.96: if the test statistic is larger than 1.96 (in absolute value) then its p-
value is less than 5%, and vice versa.  (You can find critical values by looking them up in a table 
or using the computer.) 

Sidebar: Sometimes you see people do a one-sided test, which is within 
the letter of the law but not necessarily the spirit of the law (particularly in 
regression formats).  It allows for less restrictive testing, as long as we believe 



that we know that there is only one possible direction of deviation (so, for 
example, if the sample could be larger than zero but never smaller).  But in this 
case maybe the normal distribution is inapplicable. 

The test statistic can be transformed into measurements of   or into a confidence 

interval. 

If I know that I will reject the null hypothesis of 0   at a 5% level if the test statistic, 

X

se
, is greater than 1.96 (in absolute value), then I can change around this statement to be 

about X .  This says that if the estimated value of X  is less than 1.96 standard errors from 
zero, we cannot reject the null hypothesis.  So cannot reject if: 

 1.96
X

se
  

1.96X se  

1.96 1.96se X se   . 

This range,  1.96 ,1.96se se , is directly comparable to X .  If I divide X  by its standard 

error then this ratio has a normal distribution with mean zero and standard deviation of one.  If 

I don't divide then X  has a normal distribution with mean zero and standard deviation, se . 

If the null hypothesis is not zero but some other number, null , then under the null 

hypothesis the estimator would have a normal distribution with mean of null  and standard 

error, se .  To transform this to a standard normal would mean subtracting the mean and 

dividing by se , so cannot reject if 1.96
nullX

se


 , i.e. cannot reject if X  is within the range, 

 1.96 , 1.96null nullse se   . 

Confidence Intervals 

We can use the same critical values to construct a confidence interval for the estimator, 

usually expressed in the form 1.96X se .  This shows that, for a given sample size (therefore 
se , which depends on the sample size) that there is a 95% likelihood that the interval formed 
around a given estimator contains the true value. 

This relates to hypothesis testing because if the confidence interval includes the null 
hypothesis then we cannot reject the null; if the null hypothesis value is outside of the 
confidence interval then we can reject the null. 



Find p-values 

We can also find p-values associated with a particular null hypothesis by turning around 
the process outlined above.  If the null hypothesis is zero, then with a 5% significance level we 

reject the null if 
X

se
 is greater than 1.96 in absolute value.  What if the ratio 

X

se
 were 2 – what is 

the smallest significance level that would still reject?  (Check your understanding: is it more or 
less than 5%?) 

We can compute the ratio 
X

se
 and then convert this number to a p-value, which is the 

smallest significance level that would still reject the null hypothesis (and if the null is rejected 
at a low level then it would automatically be rejected at any higher levels). 

Type I and Type II Errors 

Whenever we use statistics we must accept that there is a likelihood of errors.  In fact 
we distinguish between two types of errors, called (unimaginatively) Type I and Type II.  These 
errors arise because a null hypothesis could be either true or false and a particular value of a 
statistic could lead me to reject or not reject the null hypothesis, H0.  A table of the four 
outcomes is: 

 H0 is true H0 is false 

Do not reject H0 good! oops – Type II 

Reject H0 oops – Type I good! 

Our chosen significance level (usually 5%) gives the probability of making an error of 
Type I.  We cannot control the level of Type II error because we do not know just how far away 
H0 is from being true.  If our null hypothesis is that there is a zero relationship between two 
variables, when actually there is a tiny, weak relationship of 0.0001%, then we could be very 
likely to make a Type II error.  If there is a huge, strong relationship then we'd be much less 
likely to make a Type II error. 

There is a tradeoff (as with so much else in economics!).  If I push down the likelihood of 
making a Type I error (using 1% significance not 5%) then I must be increasing the likelihood of 
making a Type II error.   

Edward Gibbon notes that the emperor Valens would "satisfy his anxious suspicions by 
the promiscuous execution of the innocent and the guilty" (chapter 26).  This rejects the null 
hypothesis of "innocence"; so a great deal of Type I error was acceptable to avoid Type II error. 



Every email system fights spam with some sort of test: what is the likelihood that a 
given message is spam?  If it's spam, put it in the "Junk" folder; else put it in the inbox.  A Type I 
error represents putting good mail into the "Junk" folder; Type II puts junk into your inbox. 

People play with setting the null hypothesis:  

- There is an advertisement for gas, "no other brand has been proven to be 
better";  

- Rand Paul offered a law that would allow a drug maker to publish any 
claim about drug efficacy that has not been proven false – does this mean that the 
claims will be true?;   

- Regulators of chemicals face this problem: policy of prohibit use of 
chemicals proved to be unsafe vs. policy of only allow chemicals proved to be safe. 

Examples 

Assume that the calculated average is 3, the sample standard deviation is 15, and there 
are 100 observations.  The null hypothesis is that the average is zero.  The standard error of the 

average is 
15

1.5
100

se   .  We can immediately see that the sample average is more than two 

standard errors away from zero so we can reject at a 95% confidence level. 

Doing this step-by-step, the average over its standard error is 
3

2
1.5

X

se
  .  Compare 

this to 1.96 and see that 2 > 1.96 so we can reject.  Alternately we could calculate the interval, 

 1.96 ,1.96s s , which is     1.96 1.5 , 1.96 1.5   = (-2.94, 2.94), outside of which we reject the 

null.  And 3 is outside that interval.  Or calculate a 95% confidence interval of 

 3 2.94 0.06,5.94  , which does not contain zero so we can reject the null.  The critical value 

for the estimate of 3 is 4.55% (found from Excel either 2*(1-NORMSDIST(2)) if using the 
standard normal distribution or 2*(1-NORMDIST(3,0,1.5,TRUE)) if using the general normal 
distribution with a mean of zero and standard error of 1.5). 

If the sample average were -3, with the same sample standard deviation and same 100 
observations, then the conclusions would be exactly the same. 

Or suppose you find that the average difference between two samples, X and Y, (i.e. 

 
1

1 n

i i

i

X Y X Y
n 

   ) is -0.0378.  The sample standard deviation is 0.357.  The number of 

observations is 652.  These three pieces of information are enough to find confidence intervals, 
do t-tests, and find p-values. 

How? 



First find the standard error of the average difference.  This standard error is 0.357 

divided by the square root of the number of observations, so 
.357

0.01398
652

 . 

So we know (from the Central Limit Theorem) that the average has a normal 
distribution.  Our best estimate of its true mean is the sample average, -0.0378.  Our best 
estimate of its true standard error is the sample standard error, 0.01398.  So we have a normal 
distribution with mean -0.0378 and standard error 0.01398. 

We can make this into a standard normal distribution by adding 0.0378 and dividing by 
the sample standard error, so now the mean is zero and the standard error is one. 

We want to see how likely it would be, if the true mean were actually zero, that we 
would see a value as extreme as -0.0378.  (Remember: we're thinking like statisticians!) 

The value of -0.0378 is 
0.0378

0.01398


 = -2.70 standard deviations from zero.    

From this we can either compare this against critical t-values or use it to get a p-value. 

To find the p-value, we can use Excel just like in the homework assignment.  If we have 
a standard normal distribution, what is the probability of finding a value as far from zero as -
2.27, if the true mean were zero?  This is 2*(1-NORMSDIST(-2.27)) = 0.6%.  The p-value is 0.006 
or 0.6%.  If we are using a 5% level of significance then since 0.6% is less than 5%, we reject the 
null hypothesis of a zero mean.  If we are using a 1% level of significance then we can reject the 
null hypothesis of a zero mean since 0.6% is less than 1%. 

Or instead of standardizing we could have used Excel's other function to find the 
probability in the left tail, the area less than -0.0378, for a distribution with mean zero and 
standard error 0.01398, so 2*NORMDIST(-0.0378,0,0.01398,TRUE) = 0.6%. 

Standardizing means (in this case) zooming in, moving from finding the area in the tail 
of a very small pdf, like this: 



 

to moving to a standard normal, like this: 

 

But since we're only changing the units on the x-axis, the two areas of probability are 
the same. 



We could also work backwards.  We know that if we find a standardized value greater 
(in absolute value) than 1.96, we would reject the null hypothesis of zero at the 5% level.  (You 
can go back to your notes and/or HW1 to remind yourself of why 1.96 is so special.) 

We found that for this particular case, each standard deviation is of size 
.357

0.01398
652

 .  So we can multiply 1.96 times this value to see that if we get a value for the 

mean, which is farther from zero than 0.01398*1.96 = 0.0274, then we would reject the null.  
Sure enough, our value of -0.0378 is farther from zero, so we reject. 

Alternately, use this 1.96 times the standard error to find a confidence interval.  Choose 
1.96 for a 95% confidence interval, so the confidence interval around -0.0378 is plus or minus 
0.0274, 0.0378 0.0274  , which is the interval (-0.0652, -0.0104).  Since this interval does not 
include zero we can be 95% confident that we can reject the null hypothesis of zero. 

Complications from a Series of Hypothesis Tests 

Often a modeler will make a series of hypothesis tests to attempt to understand the 
inter-relations of a dataset.  However while this is often done, it is not usually done correctly.  
Recall from our discussion of Type I and Type II errors that we are always at risk of making 
incorrect inferences about the world based on our limited data.  If a test has an significance 
level of 5% then we will not reject a null hypothesis until there is just a 5% probability that we 
could be fooled into seeing a relationship where there is none.  This is low but still is a 1-in-20 
chance.  If I do 20 hypothesis tests to find 20 variables that significantly impact some variable 
of interest, then it is likely that one of those variables is fooling me (I don't know which one, 
though).  It is also likely that my high standard of proof meant that there are other variables 
which are more important but which didn't seem it. 

Sometimes you see very stupid people who collect a large number of possible 
explanatory variables, run hundreds of regressions, and find the ones that give the "best-
looking" test statistics – the ones that look good but are actually entirely fictitious.  Many 
statistical programs have procedures that will help do this; help the user be as stupid as he 
wants. 

Why is this stupid?  It completely destroys the logical basis for the hypothesis tests and 
makes it impossible to determine whether or not the data are fooling me.  In many cases this 
actually guarantees that, given a sufficiently rich collection of possible explanatory variables, I 
can run a regression and show that some variables have "good" test statistics – even though 
they are completely unconnected.  Basically this is the infamous situation where a million 
monkeys randomly typing would eventually write Shakespeare's plays.  A million earnest 
analysts, running random regressions, will eventually find a regression that looks great – where 
all of the proposed explanatory variables have test statistics that look great.  But that's just due 
to persistence; it doesn't reflect anything about the larger world.   



In finance, which throws out gigabytes of data, this phenomenon is common.  For 
instance there used to be a relationship between which team won the Super Bowl (in January) 
and whether the stock market would have a good year.  It seemed to be a solid result with 
decades of supporting evidence – but it was completely stupid and everybody knew it.  
Analysts still work to get slightly-less-implausible but still completely stupid results, which they 
use to sell their securities. 

Consider the logical chain of making a number of hypothesis tests in order to find one 
supposedly-best model.  When I make the first test, I have 5% chance of making a Type I error.  
Given the results of this test, I make the second test, again with a 5% chance of making a Type I 
error.  The probability of not making an error on either test is (.95)(.95) = .9025 so the 
significance level of the overall test procedure is 1 - .9025 = 9.75%.  If I make three successive 
hypothesis tests, the probability of not making an error is .8574 so the significance level is 
14.26%.  If I make 10 successive tests then the significance level is over 40%!  This means that 
there is a 40% chance that the tester is being fooled, that there is not actually the relationship 
there that is hypothesized – and worse, the stupid tester believes that the significance level is 
just 5%. 
 


