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Standard Error of Average 

With some math ( ) we can figure out a formula for the standard error of the sample 
average.  It is just the standard deviation of the sample divided by the square root of the 
sample size.  So the sample average is distributed normally with mean of µ and standard error 

of sse
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Sometimes this causes confusion because in calculating the standard error, s, we 

divided by the square root of (N-1), since 
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, so it seems you're dividing twice.  

But this is correct: the first division gets us an estimate of the sample's standard deviation; the 
second division by the square root of N gets us the estimate of the sample average's standard 
error. 

The standardized test statistic (sometimes called Z-score since Z will have a standard 

normal distribution) is the mean divided by its standard error, 
X X X
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shows clearly that a larger sample size (bigger N) amplifies differences of X  from zero (the 
usual null hypothesis).  A small difference, with only a few observations, could be just chance; a 
small difference, sustained over many observations, is less likely to be just chance. 

One of the first things to note about this formula is that, as N rises (as the sample gets 
larger) the standard error gets smaller – the estimator gets more precise.  So if N could rise 



towards infinity then the sample average would converge to the true mean; we write this as 

p
X   where the 

p
  means "converges in probability as N goes toward infinity". 

So the sample average is unbiased.  This simply means that it gets closer and closer to 
the true value as we get more observations.  Generally "unbiased" is a good thing, although 
later we'll discuss tradeoffs between bias and variance. 

Return to the binomial distribution, and its normal approximation.  We know that std 
error has its maximum when p= ½, so if we put in p=0.5 then the standard error of a poll is, at 

worst, 
1

2 n
, so more observations give a better approximation.  See Excel sheet 

poll_examples.  We'll return to this once we learn a bit more about the standard error of means. 

 A bit of Math: 

We want to use our basic knowledge of linear combinations of normally-distributed 
variables to show that, if a random variable, X, comes from a normal distribution then its 
average will have a normal distribution with the same mean and the standard deviation of the 
sample divided by the square root of the sample size, 

~ ,
s

X N
N


 
 
 

. 

The formula for the average is 
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observations.  This case looks very similar to our rule about, if W CX DY  , then 
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X X  , and since each X observation comes from the same distribution then 

1 2X X   so the mean is X  (it's unbiased).  You can work it out when there are n  

observations. 

Now the standard error of the mean is 
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zero because we assume that we're making a random sample.   Again since they come from 

the same distribution, 1 2X X   , the standard error is 
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With n observations, the mean works out the same and the standard error of the 

average is 
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Hypothesis Testing 

Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 

Students will be able to: 

 construct and interpret a confidence interval for a normally distributed random variable, and 
determine the probability that a normally distributed random variable lies inside a given confidence interval; 

 define the standard normal distribution, explain how to standardize a random variable, and 
calculate and interpret probabilities using the standard normal distribution; 

 explain the construction of confidence intervals; 

 define a hypothesis, describe the steps of hypothesis testing, interpret and discuss the choice of 
the null hypothesis and alternative hypothesis, and distinguish between one-tailed and two-tailed tests of 
hypotheses; 

 define and interpret a test statistic, a Type I and a Type II error, and a significance level, and 
explain how significance levels are used in hypothesis testing; 

Hypothesis Testing 

One of the principal tasks facing the statistician is to perform hypothesis tests.  These 
are a formalization of the most basic questions that people ask and analyze every day – just 
contorted into odd shapes.  But as long as you remember the basic common sense underneath 
them, you can look up the precise details of the formalization that lays on top. 

The basic question is "How likely is it, that I'm being fooled?"  Once we accept that the 
world is random (rather than a manifestation of some god's will), we must decide how to make 
our decisions, knowing that we cannot guarantee that we will always be right.  There is some 
risk that the world will seem to be one way, when actually it is not.  The stars are strewn 
randomly across the sky but some bright ones seem to line up into patterns.  So too any data 
might sometimes line up into patterns. 

A formal hypothesis sets a mathematical condition that I want to test.  Often this 
condition takes the form of some parameter being zero for no relationship or no difference. 

Statisticians tend to stand on their heads and ask: What if there were actually no 
relationship?  (Usually they ask questions of the form, "suppose the conventional wisdom were 
true?")  This statement, about "no relationship," is called the Null Hypothesis, sometimes 
abbreviated as H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We 
know that there is some probability that nature will fool me, that it will seem as though there is 
a relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?" 



The "likelihood that I'm being fooled" is the p-value. 

For a scientific experiment we typically first choose the level of certainty that we desire.  
This is called the significance level.  This answers, "How low does the p-value have to be, for 
me to accept the formal hypothesis?"  To be fair, it is important that we set this value first 
because otherwise we might be biased in favor of an outcome that we want to see.  By 
convention, economists typically use 10%, 5%, and 1%; 5% is the most common. 

A five percent level of a test is conservative, it means that we want to see so much 
evidence that there is only a 5% chance that we could be fooled into thinking that there's 
something there, when nothing is actually there.  Five percent is not perfect, though – it still 
means that of every 20 tests where I decide that there is a relationship there, it is likely that I'm 
being fooled in one of those – I'm seeing a relationship where there's nothing there. 

To help ourselves to remember that we can never be truly certain of our judgment of a 
test, we have a peculiar language that we use for hypothesis testing.  If the "likelihood that I'm 
being fooled" is less than 5% then we say that the data allow us to reject the null hypothesis.  If 
the "likelihood that I'm being fooled" is more than 5% then the data do not reject the null 
hypothesis. 

Note the formalism: we never "accept" the null hypothesis.  Why not?  Suppose I were 
doing something like measuring a piece of machinery, which is supposed to be a centimeter 
long.  The null hypothesis is that it is not defective and so is one centimeter in length.  If I 
measure with a ruler I might not find any difference to the eye.  So I cannot reject the 
hypothesis that it is one centimeter.  But if I looked with a microscope I might find that it is not 
quite one centimeter!  The fact that, with my eye, I don't see any difference, does not imply 
that a better measurement could not find any difference.  So I cannot say that it is truly exactly 
one centimeter; only that I can't tell that it isn't. 

So too with statistics.  If I'm looking to see if some portfolio strategy produces higher 
returns, then with one month of data I might not see any difference.  So I would not reject the 
null hypothesis (that the new strategy is no improvement).  But it is possible that the new 
strategy, if carried out for 100 months or 1000 months or more might show some tiny 
difference. 

Not rejecting the null is saying that I'm not sure that I'm not being fooled.  (Read that 
sentence again; it's not immediately clear but it's trying to make a subtle and important point.) 

To summarize, Hypothesis Testing asks, "What is the chance that I would see the value 
that I've actually got, if there truly were no relationship?"  If this p-value is lower than 5% then I 
reject the null hypothesis of "no relationship."  If the p-value is greater than 5% then I do not 
reject the null hypothesis of "no relationship." 

The rest is mechanics. 



The null hypothesis would tell that a parameter has some particular value, say  zero: 

0 : 0H   ; the alternative hypothesis is : 0AH   .  Under the null hypothesis the parameter 

has some distribution (often normal), so  0 : ~ 0, std errH N  .  Generally we have an estimate 

for std err , which is se  (for small samples this inserts additional uncertainty).  So I know that, 

under the null hypothesis, 
se


 has a standard normal distribution (mean of zero and standard 

deviation of one).  I know exactly what this distribution looks like, it's the usual bell-shaped 
curve: 

 

So from this I can calculate, "What is the chance that I would see the value that I've 
actually got, if there truly were no relationship?," by asking what is the area under the curve 
that is farther away from zero than the value that the data give.  (I still don't know what value 
the data will give!  I can do all of this calculation beforehand.) 

Any particular estimate of   is generally going to be X .  So the test statistic is formed 

with 
X

se
. 

Looking at the standard normal pdf, a value of the test statistic of 1.5 would not meet 
the 5% criterion (go back and calculate areas under the curve).  A value of 2 would meet the 5% 
criterion, allowing us to reject the null hypothesis.  For a 5% significance level, the standard 
normal critical value is 1.96: if the test statistic is larger than 1.96 (in absolute value) then its p-
value is less than 5%, and vice versa.  (You can find critical values by looking them up in a table 
or using the computer.) 

Sidebar: Sometimes you see people do a one-sided test, which is within 
the letter of the law but not necessarily the spirit of the law (particularly in 
regression formats).  It allows for less restrictive testing, as long as we believe 



that we know that there is only one possible direction of deviation (so, for 
example, if the sample could be larger than zero but never smaller).  But in this 
case maybe the normal distribution is inapplicable.  Personally whenever I read 
a paper where the authors do a one-sided test, I immediately become 
suspicious. 

The test statistic can be transformed into measurements of   or into a confidence 

interval. 

If I know that I will reject the null hypothesis of 0   at a 5% level if the test statistic, 

X

se
, is greater than 1.96 (in absolute value), then I can change around this statement to be 

about X .  This says that if the estimated value of X  is less than 1.96 standard errors from 
zero, we cannot reject the null hypothesis.  So cannot reject if: 

 1.96
X

se
  

1.96X se  

1.96 1.96se X se   . 

This range,  1.96 ,1.96se se , is directly comparable to X .  If I divide X  by its standard 

error then this ratio has a normal distribution with mean zero and standard deviation of one.  If 

I don't divide then X  has a normal distribution with mean zero and standard deviation, se . 

If the null hypothesis is not zero but some other number, null , then under the null 

hypothesis the estimator would have a normal distribution with mean of null  and standard 

error, se .  To transform this to a standard normal would mean subtracting the mean and 

dividing by se , so cannot reject if 1.96
nullX

se


 , i.e. cannot reject if X  is within the range, 

 1.96 , 1.96null nullse se   . 

Confidence Intervals 

We can use the same critical values to construct a confidence interval for the estimator, 

usually expressed in the form 1.96X se .  This shows that, for a given sample size (therefore 
se , which depends on the sample size) that there is a 95% likelihood that the interval formed 
around a given estimator contains the true value. 



This relates to hypothesis testing because if the confidence interval includes the null 
hypothesis then we cannot reject the null; if the null hypothesis value is outside of the 
confidence interval then we can reject the null. 

Find p-values 

We can also find p-values associated with a particular null hypothesis by turning around 
the process outlined above.  If the null hypothesis is zero, then with a 5% significance level we 

reject the null if 
X

se
 is greater than 1.96 in absolute value.  What if the ratio 

X

se
 were 2 – what is 

the smallest significance level that would still reject?  (Check your understanding: is it more or 
less than 5%?) 

We can compute the ratio 
X

se
 and then convert this number to a p-value, which is the 

smallest significance level that would still reject the null hypothesis (and if the null is rejected 
at a low level then it would automatically be rejected at any higher levels). 

Type I and Type II Errors 

Whenever we use statistics we must accept that there is a likelihood of errors.  In fact 
we distinguish between two types of errors, called (unimaginatively) Type I and Type II.  These 
errors arise because a null hypothesis could be either true or false and a particular value of a 
statistic could lead me to reject or not reject the null hypothesis, H0.  A table of the four 
outcomes is: 

 H0 is true H0 is false 

Do not reject H0 good! oops – Type II 

Reject H0 oops – Type I good! 

Our chosen significance level (usually 5%) gives the probability of making an error of 
Type I.  We cannot control the level of Type II error because we do not know just how far away 
H0 is from being true.  If our null hypothesis is that there is a zero relationship between two 
variables, when actually there is a tiny, weak relationship of 0.0001%, then we could be very 
likely to make a Type II error.  If there is a huge, strong relationship then we'd be much less 
likely to make a Type II error. 

There is a tradeoff (as with so much else in economics!).  If I push down the likelihood of 
making a Type I error (using 1% significance not 5%) then I must be increasing the likelihood of 
making a Type II error.   



Edward Gibbon notes that the emperor Valens would "satisfy his anxious suspicions by 
the promiscuous execution of the innocent and the guilty" (chapter 26).  This rejects the null 
hypothesis of "innocence"; so a great deal of Type I error was acceptable to avoid Type II error. 

Every email system fights spam with some sort of test: what is the likelihood that a 
given message is spam?  If it's spam, put it in the "Junk" folder; else put it in the inbox.  A Type I 
error represents putting good mail into the "Junk" folder; Type II puts junk into your inbox. 

People play with setting the null hypothesis:  

- There is an advertisement for gas, "no other brand has been proven to be 
better";  

- Rand Paul offered a law that would allow a drug maker to publish any 
claim about drug efficacy that has not been proven false – does this mean that the 
claims will be true?;   

- Regulators of chemicals face this problem: policy of prohibit use of 
chemicals proved to be unsafe vs. policy of only allow chemicals proved to be safe. 

Examples 

Assume that the calculated average is 3, the sample standard deviation is 15, and there 
are 100 observations.  The null hypothesis is that the average is zero.  The standard error of the 

average is 
15

1.5
100

se   .  We can immediately see that the sample average is more than two 

standard errors away from zero so we can reject at a 95% confidence level. 

Doing this step-by-step, the average over its standard error is 
3

2
1.5

X

se
  .  Compare 

this to 1.96 and see that 2 > 1.96 so we can reject.  Alternately we could calculate the interval, 

 1.96 ,1.96s s , which is     1.96 1.5 , 1.96 1.5   = (-2.94, 2.94), outside of which we reject the 

null.  And 3 is outside that interval.  Or calculate a 95% confidence interval of 

 3 2.94 0.06,5.94  , which does not contain zero so we can reject the null.  The critical value 

for the estimate of 3 is 4.55% (found from Excel either 2*(1-NORMSDIST(2)) if using the 
standard normal distribution or 2*(1-NORMDIST(3,0,1.5,TRUE)) if using the general normal 
distribution with a mean of zero and standard error of 1.5). 

If the sample average were -3, with the same sample standard deviation and same 100 
observations, then the conclusions would be exactly the same. 

Or suppose you find that the average difference between two samples, X and Y, (i.e. 

 
1

1 n

i i

i

X Y X Y
n 

   ) is -0.0378.  The sample standard deviation is 0.357.  The number of 

observations is 652.  These three pieces of information are enough to find confidence intervals, 
do t-tests, and find p-values. 



How? 

First find the standard error of the average difference.  This standard error is 0.357 

divided by the square root of the number of observations, so 
.357

0.01398
652

 . 

So we know (from the Central Limit Theorem) that the average has a normal 
distribution.  Our best estimate of its true mean is the sample average, -0.0378.  Our best 
estimate of its true standard error is the sample standard error, 0.01398.  So we have a normal 
distribution with mean -0.0378 and standard error 0.01398. 

We can make this into a standard normal distribution by adding 0.0378 and dividing by 
the sample standard error, so now the mean is zero and the standard error is one. 

We want to see how likely it would be, if the true mean were actually zero, that we 
would see a value as extreme as -0.0378.  (Remember: we're thinking like statisticians!) 

The value of -0.0378 is 
0.0378

0.01398


 = -2.70 standard deviations from zero.    

From this we can either compare this against critical t-values or use it to get a p-value. 

To find the p-value, we can use Excel just like in the homework assignment.  If we have 
a standard normal distribution, what is the probability of finding a value as far from zero as -
2.27, if the true mean were zero?  This is 2*(1-NORMSDIST(-2.27)) = 0.6%.  The p-value is 0.006 
or 0.6%.  If we are using a 5% level of significance then since 0.6% is less than 5%, we reject the 
null hypothesis of a zero mean.  If we are using a 1% level of significance then we can reject the 
null hypothesis of a zero mean since 0.6% is less than 1%. 

Or instead of standardizing we could have used Excel's other function to find the 
probability in the left tail, the area less than -0.0378, for a distribution with mean zero and 
standard error 0.01398, so 2*NORMDIST(-0.0378,0,0.01398,TRUE) = 0.6%. 

Standardizing means (in this case) zooming in, moving from finding the area in the tail 
of a very small pdf, like this: 



 

to moving to a standard normal, like this: 

 

But since we're only changing the units on the x-axis, the two areas of probability are 
the same. 



We could also work backwards.  We know that if we find a standardized value greater 
(in absolute value) than 1.96, we would reject the null hypothesis of zero at the 5% level.  (You 
can go back to your notes and/or HW1 to remind yourself of why 1.96 is so special.) 

We found that for this particular case, each standard deviation is of size 
.357

0.01398
652

 .  So we can multiply 1.96 times this value to see that if we get a value for the 

mean, which is farther from zero than 0.01398*1.96 = 0.0274, then we would reject the null.  
Sure enough, our value of -0.0378 is farther from zero, so we reject. 

Alternately, use this 1.96 times the standard error to find a confidence interval.  Choose 
1.96 for a 95% confidence interval, so the confidence interval around -0.0378 is plus or minus 
0.0274, 0.0378 0.0274  , which is the interval (-0.0652, -0.0104).  Since this interval does not 
include zero we can be 95% confident that we can reject the null hypothesis of zero. 

Complications from a Series of Hypothesis Tests 

Often a modeler will make a series of hypothesis tests to attempt to understand the 
inter-relations of a dataset.  However while this is often done, it is not usually done correctly.  
Recall from our discussion of Type I and Type II errors that we are always at risk of making 
incorrect inferences about the world based on our limited data.  If a test has an significance 
level of 5% then we will not reject a null hypothesis until there is just a 5% probability that we 
could be fooled into seeing a relationship where there is none.  This is low but still is a 1-in-20 
chance.  If I do 20 hypothesis tests to find 20 variables that significantly impact some variable 
of interest, then it is likely that one of those variables is fooling me (I don't know which one, 
though).  It is also likely that my high standard of proof meant that there are other variables 
which are more important but which didn't seem it. 

Sometimes you see very stupid people who collect a large number of possible 
explanatory variables, run hundreds of regressions, and find the ones that give the "best-
looking" test statistics – the ones that look good but are actually entirely fictitious.  Many 
statistical programs have procedures that will help do this; help the user be as stupid as he 
wants. 

Why is this stupid?  It completely destroys the logical basis for the hypothesis tests and 
makes it impossible to determine whether or not the data are fooling me.  In many cases this 
actually guarantees that, given a sufficiently rich collection of possible explanatory variables, I 
can run a regression and show that some variables have "good" test statistics – even though 
they are completely unconnected.  Basically this is the infamous situation where a million 
monkeys randomly typing would eventually write Shakespeare's plays.  A million earnest 
analysts, running random regressions, will eventually find a regression that looks great – where 
all of the proposed explanatory variables have test statistics that look great.  But that's just due 
to persistence; it doesn't reflect anything about the larger world.   



In finance, which throws out gigabytes of data, this phenomenon is common.  For 
instance there used to be a relationship between which team won the Super Bowl (in January) 
and whether the stock market would have a good year.  It seemed to be a solid result with 
decades of supporting evidence – but it was completely stupid and everybody knew it.  
Analysts still work to get slightly-less-implausible but still completely stupid results, which they 
use to sell their securities. 

Consider the logical chain of making a number of hypothesis tests in order to find one 
supposedly-best model.  When I make the first test, I have 5% chance of making a Type I error.  
Given the results of this test, I make the second test, again with a 5% chance of making a Type I 
error.  The probability of not making an error on either test is (.95)(.95) = .9025 so the 
significance level of the overall test procedure is 1 - .9025 = 9.75%.  If I make three successive 
hypothesis tests, the probability of not making an error is .8574 so the significance level is 
14.26%.  If I make 10 successive tests then the significance level is over 40%!  This means that 
there is a 40% chance that the tester is being fooled, that there is not actually the relationship 
there that is hypothesized – and worse, the stupid tester believes that the significance level is 
just 5%. 
 

Hypothesis Testing with Data 
Let's use the CEX… 
 
 


