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(yeah, these notes start to get skimpy – you might want to, you know, actually go to class!) 

CPS Data 

We have been using various data sets; today we'll use another well-known data set, the 
Current Population Survey.  This dataset has over 200,000 people; it is the basis for the US 
unemployment statistics.  The Bureau of Labor Statistics (BLS) and Census work together to 
put together and maintain this data; every March a new group of people rotates in while the 
old group (who answered questions for the past year) rotate out.  It is all publicly available: if 
some wacko thinks the government is fudging the unemployment statistics, they can go and 
re-calculate everything on their own to check.  I've put the data file, cps_mar2013.RData, 

onto InYourClass along with cps_mar2013_initial_recoding.r (which you need not 
run) that created the file from the original data (and has the details of the coding) as well as 
cps_1.R. 

Can run a basic linear regression to find what are principal determinants of wage/salary 
levels (looking at a subset of prime-age, fulltime, year-round workers): 
model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + 

race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + 

educ_bach + educ_adv + married + divwidsep + union_m + veteran + 

immigrant + immig2gen) 

coeftest(model1) 

This gives an estimate of how important are various educational qualifications. 

Statistical Significance 

Statistical significance of coefficient estimates is the same when we look at individual 
coefficients but more complicated for multiple coefficients: we can ask whether a group of 
variables are jointly significant, which takes a more complicated test.  We can even ask if all of 
the slope coefficients together are statistically significant. 

For a univariate regression, if the single slope coefficient is statistically significant then 
the overall regression is as well (the F statistic is the square of the t-stat in that case). 

The difference between the overall regression fit and the significance of any particular 
estimate is that a hypothesis test of one particular coefficient tests if that parameter is zero; is 
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 and compares it to a t distribution.  The test of the 

regression significance tests if ALL of the slope coefficients are simultaneously zero; if β1 = β2 = 
β3 = ... = βK = 0.  The latter is much more restrictive.  (See Chapter 7 of Stock & Watson.) 

It is often sensible to make joint tests of regression coefficients, for example with a 
group of dummy variables.  If we have a set of dummies for education levels, it is strange to 
think of omitting just one or two; it is more reasonable to ask whether education measures 
(overall) are statistically significant.  We might also want to know if individual coefficients are 
equal to each other (e.g. to ask if going to college, without getting any degree, is really 
different from the estimate for just a high school diploma. 

To do this in R, there is a package, linearHypothesis (part of the package, car, 

Companion to Applied Regression, which is auto-loaded by AER package).  But the commands 
shouldn't obscure the simple basic point: we evaluate variables based on how well they fit in 
the model. 

To consider the question of whether a set of variables is statistically significant, we 
basically are just looking at how big is the error (the Sum of Squared Errors) with and without 
those variables.  In general adding more variables to the model can never make the errors 
bigger (can never increase the Sum of Squared Errors) – basically this is a statement that the 
Marginal Benefit of more variables can never be negative.  But profit maximization requires 
that we balance Marginal Benefit against Marginal Cost – what is the marginal cost of adding 
more variables?  Statistical significance is one measure of profitability in this sense. 

If adding new predictors makes the error "a lot" smaller, then those predictors are 
jointly statistically significant.  The essence of statistical testing is just finding a good metric for 
"a lot". 

Note that we can only properly make comparisons within models – it doesn't make 
much sense to look across models.  If I have a model of the fraction of income spent on food, 
and another model of the level of income, it is difficulty to sensibly pose a question like, "in 
which model is education more important?"  It would be like asking who scored more points 
per game, Shaq or Jeter? – you can ask the question but it's difficult to interpret in a sensible 
way.  

But within a model we can make comparisons and many of them come down to asking, 
how much smaller are the errors? (Did the Sum of Squared Errors fall by a lot?)  Sometimes it is 
easiest to just estimate the model twice, with or without the variables of interest, and look at 
how much the Sum of Squared Errors (from ANOVA in R) fell.  But once you get some 
experience, you'll appreciate linearHypothesis.   

Why do we always leave out a dummy variable?  Multicollinearity.  (See Chapter 6 of 
Stock & Watson.) 



 OLS basic assumptions: 

o The conditional distribution of ui given Xi has a mean of zero.  
This is a complicated way of saying something very basic: I have no additional 
information outside of the model, which would allow me to make better 
guesses.  It can also be expressed as implying a zero correlation between Xi and 
ui.  We will work up to other methods that incorporate additional information. 

o The X and errors are i.i.d.  This is often not precisely true; on the 
other hand it might be roughly right, and it gives us a place to start. 

o X and errors don't have values that are "too extreme."  This is 
technical (about existence of fourth moments) and broadly true, whenever the X 
and Y data have a limit on the amount of variation, although there might be 
particular circumstances where it is questionable (sometimes in finance). 

 So if these are true then the OLS are unbiased and consistent.  So 
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.  The normal distribution, as the sample gets large, allows 

us to make hypothesis tests about the values of the betas.  In particular, if you look back 

to the "eyeball" data at the beginning, you will recall that a zero value for the slope, 1, 

is important.  It implies no relationship between the variables.  So we will commonly 

test the estimated values of  against a null hypothesis that they are zero. 

Heteroskedasticity-consistent errors 

You can choose to use heteroskedasticity-consistent errors as in the textbook. 

The Stock and Watson textbook uses heteroskedasticity-consistent errors (sometimes 
called Eicker-Huber-White errors, after the various authors who figured out how to calculate 
them).  Later you can additionally specify heteroskedasticity- and autocorrelation-consistent 
(HAC) errors, sometimes called Newey-West 

Heteroskedasticity-Consistent Errors in R 
These are HCerrors, in the “sandwich” package, which depends on “zoo” package; probably 
the easiest implementation is via the “lmtest” package.  So install those 3. 
On my Win7 machine, I find it easiest to download the packages, “Install from local zip file”, 
[that way I don’t need a wifi connection every time] then drop in these commands, 

library("zoo") 

library("sandwich") 

library("lmtest") 
 
For heteroskedasticity-consistent errors, use the coeftest() function but add the command, 
vcovHC. So from example of CPS data, use: 



coeftest(model1,vcovHC) 
 
The command coeftest will do a variety of coefficient tests; if you don't play with the 

defaults, you get the same standard errors as in the summary.  If you use vcovHC, you get the 
heteroskedasticity-consistent standard errors.  (Econometricians have worked their little butts 
off, coming up with variations on these, so there are HC0 through HC5 just in this package, 
don’t worry for now about which one to use.) 
 

If you compare the two sets of output, you should notice that the actual coefficient 
estimates are unchanged – it's the estimated standard errors that change.  Then those changes 
propagate through, so the t-statistics and p-values also change.  There is no generic result for 
whether the estimated standard errors are always bigger or smaller and even in the output 
from this simple case it goes both ways.  However the standard errors often tend to be bigger 
with the heterskedasticity correction (which means that – test yourself! – the t-statistics are 
___ [bigger or smaller in absolute value?] and p-values are ___ [bigger or smaller?]). 

Nonlinear Regression  

(more properly, How to Jam Nonlinearities into a Linear Regression) 

 X, X2, X3, … Xr 

 ln(X), ln(Y), both ln(Y) & ln(X) 

 dummy variables 

 interactions of dummies 

 interactions of dummy/continuous 

 interactions of continuous variables 

There are many examples of, and reasons for, nonlinearity.  In fact we can think that the 
most general case is nonlinearity and a linear functional form is just a convenient simplification 
which is sometimes useful.  But sometimes the simplification has a high price.  For example, 
my kids believe that age and height are closely related – which is true for their sample (i.e. 
mostly kids of a young age, for whom there is a tight relationship, plus 2 parents who are aged 
and tall).  If my sample were all children then that might be a decent simplification; if my 
sample were adults then that's lousy. 

The usual justification for a linear regression is that, for any differentiable function, the 
Taylor Theorem delivers a linear function as being a close approximation – but this is only 
within a neighborhood.  We need to work to get a good approximation. 



Nonlinear terms 

We can return to our regression using CPS data.  First, we might want to ask why our 
regression is linear.  This is mostly convenience, and we can easily add non-linear terms such as 
Age2, if we think that the typical age/wage profile looks like this: 
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Wage 

 

So the regression would be: 

 
iiii AgeAgeWage   2
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(where the term "..." indicates "other stuff" that should be in the regression). 

As we remember from calculus, 

 1 2 2
dWage

Age
dAge

      

so that the extra “boost” in wage from another birthday might fall as the person gets 

older, and even turn negative if the estimate of 2 0   (a bit of algebra can solve for the top of 

the hill by finding the Age that sets 0
dWage

dAge
 ). 

We can add higher-order effects as well.  Some labor econometricians argue for 
including Age3 and Age4 terms, which can trace out some complicated wage/age profiles.  
However we need to be careful of "overfitting" – adding more explanatory variables will never 
lower the R2. 

To show this in R, I will do a lot of plots – details in cps_1.R. (below) 



 

 

Logarithms 

Similarly can specify X or Y as ln(X) and/or ln(Y).  But we've got to be careful: remember 
from math (or theory of insurance from Intermediate Micro) that E[ln(Y)] IS NOT EQUAL TO 
ln(E[Y]) !  In cases where we're regressing on wages, this means that the log of the average 
wage is not equal to the average log wage.    

(Try it.  Go ahead, I'll wait.) 

When both X and Y are measured in logs then the coefficients have an easy economic 

interpretation.  Recall from calculus that with  lny x  and 
1dy

dx x
 , so %

dx
dy x

x
    -- our 

usual friend, the percent change.  So in a regression where both X and Y are in logarithms, then 
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 is the elasticity of Y with respect to X.   

Also, if Y is in logs and D is a dummy variable, then the coefficient on the dummy 
variable is just the percent change when D switches from zero to one. 

So the choice of whether to specify Y as levels or logs is equivalent to asking whether 
dummy variables are better specified as having a constant level effect (i.e. women make 
$10,000 less than men) or having a percent change effect (women make 25% less than men).  
As usual there may be no general answer that one or the other is always right! 



Recall our discussion of dummy variables, that take values of just 0 or 1, which we’ll 
represent as Di.  Since, unlike the continuous variable Age, D takes just two values, it 
represents a shift of the constant term.  So the regression, 

 iiii uDAgeWage  310   

shows that people with D=0 have intercept of just 0, while those with D=1 have 

intercept equal to 0 + 3.  Graphically, this is: 

0+3

0

 

 

We need not assume that the 3 term is positive – if it were negative, it would just shift 
the line downward.  We do however assume that the rate at which age increases wages is the 
same for both genders – the lines are parallel. 

The equation could be also written as 
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Dummy Variables Interacting with Other Explanatory Variables 

The assumption about parallel lines with the same slopes can be modified by adding 
interaction terms: define a variable as the product of the dummy times age, so the regression 
is  
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or 
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so that, for those with D=0, as before 
Age

Wage




=1 but for those with D=1, 
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.  Graphically, 
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so now the intercepts and slopes are different. 

So we might wonder if men and women have a similar wage-age profile.  We could fit a 
number of possible specifications that are variations of our basic model that wage depends on 
age and age-squared.  The first possible variation is simply that: 

2

0 1 2 3i i i i iWage Age Age D u        , 

which allows the wage profile lines to have different intercept-values but otherwise to 
be parallel (the same hump point where wages have their maximum value), as shown by this 
graph: 
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The next variation would be to allow the lines to have different slopes as well as 
different intercepts: 
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which allows the two groups to have different-shaped wage-age profiles, as in this 
graph: 
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(The wage-age profiles might intersect or they might not – it depends on the sample 
data.) 

We can look at this alternately, that for those with D=0, 
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so the extreme value of Age (where 0
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 ) is 1
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While for those with D=1, 
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so the extreme value of Age (where 0
dWage

dAge
 ) is 
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value, for both cases, as 
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 where D is 0 or 1. 

This specification, with a dummy variable multiplying each term: the constant and all 
the explanatory variables, is equivalent to running two separate regressions: one for men and 
one for women: 
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Where the new coefficients are related to the old by the identities: 
0 0 3

female    , 

1 1 4

female    , and 
2 2 5

female    . Sometimes breaking up the regressions is easier, if 

there are large datasets and many interactions. 

The plot for the CPS data is (code is below): 

 

Testing if All the New Variable Coefficients are Zero 

You're wondering how to tell if all of these new interactions are worthwhile.  Simple: 
Hypothesis Testing!  There are various formulas, some more complicated, but for the case of 
homoskedasticity the formula is relatively simple.  



Why any formula at all – why not look at the t-tests individually?  Because the individual 
t-tests are asking if each individual coefficient is zero, not if it is zero and others as well are also 
zero.  That would be a stronger test. 

To measure how much a group of variables contributes to the regression, we look at the 
residual values – how much is still unexplained, after the various models?  And since this is 
OLS, we look at the squared residuals.  R outputs the Sum of Squares for the Residuals in the 
ANOVA.  We compare the sum of squares from the two models and see how much it has gone 
down with the extra variables.  A big decrease indicates that the new variables are doing good 
work.  And how do we know, how big is "big"?  Compare it to some given distribution, in this 
case the F distribution.  Basically we look at the percent change in the sum of squares, so 
something like: 
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with the wavy equals sign to show that we're not quite done.  Note that model 0 is the 
original model and model 1 is the model with the additional regressors, which will have a 
smaller residual (so this F can never be negative).   

To get from approximately equal to an equals sign, we need to make it a bit like an 
elasticity – what is the percent change in the number of variables in the model?  Suppose that 
we have N observations and that the original model has K variables, to which we're considering 
adding Q more observations.  Then the original model has (N – K – 1) degrees of freedom [that 
"1" is for the constant term] while the new model has (N – K – Q – 1) degrees of freedom, so the 

difference is Q.  So the percent change in degrees of freedom is 
1

Q

N K Q  
.  Then the full 

formula for the F test is 
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Which is, admittedly, fugly.  But we know its distribution, it's F with (Q, N-K-Q-1) 
degrees of freedom – the F-distribution has 2 sets of degrees of freedom.  Calculate that F, 
then use R to find pf(F, df1 =Q, df2 = (N-K-Q-1)) (or Excel to calculate FDIST(F,Q,N-K-Q-1)), to 
find a p-value for the test.  If the p-value is less than 5%, reject the null hypothesis. 

Usually you will have the computer spit out the results for you.  In R, anova(model1, 
model2). 



Multiple Dummy Variables 

Multiple dummy variables, D1,i , D2,i , …,DJ,i, operate on the same basic principle.  Of 
course we can then have many further interactions!  Suppose we have dummies for education 
and immigrant status.  The coefficient on education would tell us how the typical person 
(whether immigrant or native) fares, while the coefficient on immigrant would tell us how the 
typical immigrant (whatever her education) fares.  An interaction of “more than Bachelor’s 
degree” with “Immigrant” would tell how the typical highly-educated immigrant would do 
beyond how the “typical immigrant” and “typical highly-educated” person would do (which 
might be different, for both ends of the education scale).   

Many, Many Dummy Variables 

Don't let the name fool you – you'd have to be a dummy not to use lots of dummy 
variables.  For example regressions to explain people's wages might use dummy variables for 
the industry in which a person works.  Regressions about financial data such as stock prices 
might include dummies for the days of the week and months of the year. 

Dummies for industries are often denoted with labels like "two-digit" or "three-digit" or 
similar jargon.  To understand this, you need to understand how the government classifies 
industries.  A specific industry might get a 4-digit code where each digit makes a further more 
detailed classification.  The first digit refers to the broad section of the economy, as goods pass 
from the first producers (farmers and miners, first digit zero) to manufacturers (1 in the first 
digit for non-durable manufacturers such as meat processing, 2 for durable manufacturing, 3 
for higher-tech goods) to transportation, communications and utilities (4), to wholesale trade 
(5) then retail (6).  The 7's begin with FIRE (Finance, Insurance, and Real Estate) then services in 
the later 7 and early 8 digits while the 9 is for governments.  The second and third digits give 
more detail: e.g. 377 is for sawmills, 378 for plywood and engineered wood, 379 for 
prefabricated wood homes.  Some data sets might give you 5-digit or even 6-digit information.  
These classifications date back to the 1930s and 1940s so some parts show their age: the ever-
increasing number of computer parts go where plain "office supplies" used to be.   

The CPS data distinguishes between "major industries" with 16 categories and "detailed 
industry" with about 50.   

Creating 50 dummy variables could be tiresome so that's where R's "factor" data 
type comes in handy.  Just add in a factor into your OLS model and let R take care of the rest.  
So toss in A_DTIND and A_DTOCC.  So add these lines and fire away, 

det_ind <- as.factor(A_DTIND) 

det_occ <- as.factor(A_DTOCC) 

In other models such as predictions of sales, the specification might include a time 
trend (as discussed earlier) plus dummy variables for days of the week or months of the year, 
to represent the typical sales for, say, "a Monday in June".  



Why are we doing all of this?  Because I want you to realize all of the choices that go 
into creating a regression or doing just about anything with data.  There are a host of choices 
available to you.  Some choices are rather conventional (for example, the education 
breakdown I used above) but you need to know the field in order to know what assumptions 
are common.  Sometimes these commonplace assumptions conceal important information.  
You want to do enough experimentation to understand which of your choices are crucial to 
your results.  Then you can begin to understand how people might analyze the exact same 
data but come to varying conclusions.  If your results contradict someone else's, then you have 
to figure out what are the important assumptions that create the difference. 

 
 

  



# cps_1.R 

# looking at CPS 2013 data 

# uses file from dataferret download of CPS March 2013 supplement, 

downloaded June 12 2014 

# accompanying lecture notes for KFoster class ECO B2000 in fall 2014 at 

CCNY 

 

rm(list = ls(all = TRUE)) 

setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 

load("cps_mar2013.RData") 

 

attach(dat_CPSMar2013) 

# use prime-age,fulltime, yearround workers 

use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 

dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 

 

detach(dat_CPSMar2013) 

 

attach(dat_use) # just prime-age,fulltime, yearround workers 

 

# always a good idea to get basic stats of all of the variables in your 

regression to see if they make sense 

summary(WSAL_VAL) 

summary(Age) 

summary(female) 

summary(AfAm) 

summary(Asian) 

summary(Amindian) 

summary(race_oth) 

summary(Hispanic) 

summary(educ_hs) 

summary(educ_smcoll) 

summary(educ_as) 

summary(educ_bach) 

summary(educ_adv) 

summary(married) 

summary(divwidsep) 

summary(union_m) 

summary(veteran) 

summary(immigrant) 

summary(immig2gen) 

 

model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

 

summary(model1) 

coeftest(model1) 

#sometimes log form is preferred 

# dat_noZeroWage <- subset(dat_use,(WSAL_VAL > 0)) 

# model1a <- lm(log(WSAL_VAL) ~ Age + female + AfAm + Asian + Amindian + 

race_oth  

#              + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  



#              + married + divwidsep + union_m + veteran + immigrant + 

immig2gen, data = dat_noZeroWage) 

# detach(dat_use) 

# attach(dat_noZeroWage) 

# log(mean(WSAL_VAL)) 

# mean(log(WSAL_VAL)) 

# detach(dat_noZeroWage) 

# attach(dat_use) 

# ^^ yes there are more elegant ways to do that, avoiding attach/detach - 

find them! 

 

# for heteroskedasticity consistent errors 

require(sandwich) 

require(lmtest) 

 

coeftest(model1,vcovHC) 

 

# jam nonlinear into linear regression 

model2 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 

race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

 

model3 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + I(female*Age) + 

I(female*(Age^2)) + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

# could do this with "update" function instead 

summary(model2) 

summary(model3) 

# the ANOVA function is flexible - can compare nested models 

anova(model1,model2,model3) 

 

# Applied Econometrics in R suggests also spline and kernel estimators, we 

might get to that later 

 

# subset in order to plot... 

NNobs <- length(WSAL_VAL) 

set.seed(12345) # just so you can replicate and get same "random" choices 

graph_obs <- (runif(NNobs) < 0.1) # so something like 4000 obs 

dat_graph <-subset(dat_use,graph_obs)   

 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), data = dat_graph) 

# ^^ that looks like crap since Wages are soooooooo skew!  So try to find 

ylim = c(0, ??) 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), ylim = c(0,150000), data = dat_graph) 

 

# to plot the predicted values might want to do something like, 

lines(fitted.values(model2) ~ Age) 

# but that will plot ALLLLL the values, which is 4500 too many and looks 

awful 



# so back to this, 

to_be_predicted2 <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 0, 

Amindian = 1, race_oth = 1,  

                              Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                              married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted2$yhat <- predict(model2, newdata = to_be_predicted2) 

 

lines(yhat ~ Age, data = to_be_predicted2) 

 

# now compare model3 

to_be_predicted3m <- data.frame(Age = 25:55, female = 0, AfAm = 0, Asian = 

0, Amindian = 1, race_oth = 1,  

                               Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                               married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted3m$yhat <- predict(model3, newdata = to_be_predicted3m) 

 

to_be_predicted3f <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 

0, Amindian = 1, race_oth = 1,  

                                Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                                married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted3f$yhat <- predict(model3, newdata = to_be_predicted3f) 

 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), ylim = c(0,150000), xlab = "Age", data = dat_graph) 

lines(yhat ~ Age, data = to_be_predicted3f) 

lines(yhat ~ Age, data = to_be_predicted3m, lty = 2) 

legend("topleft", c("male", "female"), lty = c(2,1), bty = "n") 

 

det_ind <- as.factor(A_DTIND) 

det_occ <- as.factor(A_DTOCC) 

 

model4 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 

race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen 

             + det_ind + det_occ) 

summary(model4) 

 

# and always remember this part... 

detach(dat_use) 

 

 


