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Nonlinear Regression  

(more properly, How to Jam Nonlinearities into a Linear Regression) 

 X, X2, X3, … Xr 

 ln(X), ln(Y), both ln(Y) & ln(X) 

 dummy variables 

 interactions of dummies 

 interactions of dummy/continuous 

 interactions of continuous variables 

There are many examples of, and reasons for, nonlinearity.  In fact we can think that the 
most general case is nonlinearity and a linear functional form is just a convenient simplification 
which is sometimes useful.  But sometimes the simplification has a high price.  For example, 
my kids believe that age and height are closely related – which is true for their sample (i.e. 
mostly kids of a young age, for whom there is a tight relationship, plus 2 parents who are aged 
and tall).  If my sample were all children then that might be a decent simplification; if my 
sample were adults then that's lousy. 

The usual justification for a linear regression is that, for any differentiable function, the 
Taylor Theorem delivers a linear function as being a close approximation – but this is only 
within a neighborhood.  We need to work to get a good approximation. 

Nonlinear terms 

We can return to our regression using CPS data.  First, we might want to ask why our 
regression is linear.  This is mostly convenience, and we can easily add non-linear terms such as 
Age2, if we think that the typical age/wage profile looks like this: 



 

Age 

Wage 

 

So the regression would be: 

 iiii AgeAgeWage   2

210  

(where the term "..." indicates "other stuff" that should be in the regression). 

As we remember from calculus, 

 1 2 2
dWage

Age
dAge

      

so that the extra “boost” in wage from another birthday might fall as the person gets 

older, and even turn negative if the estimate of 2 0   (a bit of algebra can solve for the top of 

the hill by finding the Age that sets 0
dWage

dAge
 ). 

We can add higher-order effects as well.  Some labor econometricians argue for 
including Age3 and Age4 terms, which can trace out some complicated wage/age profiles.  
However we need to be careful of "overfitting" – adding more explanatory variables will never 
lower the R2. 

To show this in R, I will do a lot of plots – details in cps_1.R. (below) 



 

 

Logarithms 

Similarly can specify X or Y as ln(X) and/or ln(Y).   

(You also need to figure out how to work with observations where Y=0 since ln(0) 
doesn't give good results.  Dropping those observations might be OK or might not, it depends.) 

But we've got to be careful: remember from math (or theory of insurance from 
Intermediate Micro) that E[ln(Y)] IS NOT EQUAL TO ln(E[Y]) !  In cases where we're regressing 
on wages, this means that the log of the average wage is not equal to the average log wage.   

(Try it.  Go ahead, I'll wait.) 

When both X and Y are measured in logs then the coefficients have an easy economic 

interpretation.  Recall from calculus that with  lny x  and 
1dy

dx x
 , so %

dx
dy x

x
    -- our 

usual friend, the percent change.  So in a regression where both X and Y are in logarithms, then 
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 is the elasticity of Y with respect to X.   

Also, if Y is in logs and D is a dummy variable, then the coefficient on the dummy 
variable is just the percent change when D switches from zero to one. 

So the choice of whether to specify Y as levels or logs is equivalent to asking whether 
dummy variables are better specified as having a constant level effect (i.e. women make 



$10,000 less than men) or having a percent change effect (women make 25% less than men).  
As usual there may be no general answer that one or the other is always right! 

Recall our discussion of dummy variables, that take values of just 0 or 1, which we’ll 
represent as Di.  Since, unlike the continuous variable Age, D takes just two values, it 
represents a shift of the constant term.  So the regression, 

 iiii uDAgeWage  310   

shows that people with D=0 have intercept of just 0, while those with D=1 have 

intercept equal to 0 + 3.  Graphically, this is: 

0+3

0

 

 

We need not assume that the 3 term is positive – if it were negative, it would just shift 
the line downward.  We do however assume that the rate at which age increases wages is the 
same for both genders – the lines are parallel. 

The equation could be also written as 
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Dummy Variables Interacting with Other Explanatory Variables 

The assumption about parallel lines with the same slopes can be modified by adding 
interaction terms: define a variable as the product of the dummy times age, so the regression 
is  

 iiiiii uAgeDDAgeWage  4310 
 

or 
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so that, for those with D=0, as before 
Age

Wage




=1 but for those with D=1, 

1 4

Wage

Age
 


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
.  Graphically, 

0+3

0

 

so now the intercepts and slopes are different. 

So we might wonder if men and women have a similar wage-age profile.  We could fit a 
number of possible specifications that are variations of our basic model that wage depends on 
age and age-squared.  The first possible variation is simply that: 

2

0 1 2 3i i i i iWage Age Age D u        , 

which allows the wage profile lines to have different intercept-values but otherwise to 
be parallel (the same hump point where wages have their maximum value), as shown by this 
graph: 
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The next variation would be to allow the lines to have different slopes as well as 
different intercepts: 
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which allows the two groups to have different-shaped wage-age profiles, as in this 
graph: 
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(The wage-age profiles might intersect or they might not – it depends on the sample 
data.) 

We can look at this alternately, that for those with D=0, 
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so the extreme value of Age (where 0
dWage

dAge
 ) is 1
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While for those with D=1, 
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so the extreme value of Age (where 0
dWage

dAge
 ) is 
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value, for both cases, as 
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 where D is 0 or 1. 

This specification, with a dummy variable multiplying each term: the constant and all 
the explanatory variables, is equivalent to running two separate regressions: one for men and 
one for women: 
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Where the new coefficients are related to the old by the identities: 
0 0 3

female    , 

1 1 4

female    , and 2 2 5

female    . Sometimes breaking up the regressions is easier, if 

there are large datasets and many interactions. 

Note that it would be very weird (and difficult to justify) to have an interaction of the 
dummy with the Age term but not with Age-squared or vice versa.  Why would we want to 
assume that, say, men and women have different linear effects but the same squared effect? 

The plot for the CPS data is (code is below): 



 

Testing if All the New Variable Coefficients are Zero 

You're wondering how to tell if all of these new interactions are worthwhile.  Simple: 
Hypothesis Testing!  There are various formulas, some more complicated, but for the case of 
homoskedasticity the formula is relatively simple.  

Why any formula at all – why not look at the t-tests individually?  Because the individual 
t-tests are asking if each individual coefficient is zero, not if it is zero and others as well are also 
zero.  That would be a stronger test. 

To measure how much a group of variables contributes to the regression, we look at the 
residual values – how much is still unexplained, after the various models?  And since this is 
OLS, we look at the squared residuals.  R outputs the Sum of Squares for the Residuals in the 
ANOVA.  We compare the sum of squares from the two models and see how much it has gone 
down with the extra variables.  A big decrease indicates that the new variables are doing good 
work.  And how do we know, how big is "big"?  Compare it to some given distribution, in this 
case the F distribution.  Basically we look at the percent change in the sum of squares, so 
something like: 

 0 1

1

SSR SSR
F

SSR


  

with the wavy equals sign to show that we're not quite done.  Note that model 0 is the 
original model and model 1 is the model with the additional regressors, which will have a 
smaller residual (so this F can never be negative).   

To get from approximately equal to an equals sign, we need to make it a bit like an 
elasticity – what is the percent change in the number of variables in the model?  Suppose that 



we have N observations and that the original model has K variables, to which we're considering 
adding Q more observations.  Then the original model has (N – K – 1) degrees of freedom [that 
"1" is for the constant term] while the new model has (N – K – Q – 1) degrees of freedom, so the 

difference is Q.  So the percent change in degrees of freedom is 
1

Q

N K Q  
.  Then the full 

formula for the F test is 
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Which is, admittedly, fugly, but perhaps similar enough to elasticity formulas to seem 
vaguely reassuring.  But we know its distribution, it's F with (Q, N-K-Q-1) degrees of freedom – 
the F-distribution has 2 sets of degrees of freedom.  Calculate that F, then use R to find pf(F, 
df1 =Q, df2 = (N-K-Q-1)) (or Excel to calculate FDIST(F,Q,N-K-Q-1)), to find a p-value for the 
test.  If the p-value is less than 5%, reject the null hypothesis. 

Usually you will have the computer spit out the results for you.  In R, anova(model1, 

model2) or else linearHypothesis() as we did before. 

Don't be a dummy about Dummy Variables 
 It's important to think about the implicit restrictions imposed by the dummy 
specification – e.g. just putting in a dummy for "high school diploma or above" implicitly 
assumes that there are two groups, each relatively homogenous.  So a regression of wage on 
just a dummy for high-school diploma assumes that there are two groups: those with a 
diploma and those without (many of whom have more than a high school degree) – and that 
each of these groups is relatively homogenous.  In many cases the data might be too coarse to 
estimate fine distinctions: some datasets distinguish between people with a high school 
diploma and those with a GED while other data lump together those categories.  (Many New 
Yorkers would distinguish which high school!)  Every model makes certain assumptions but 
you want to consider them. 
 It might be wise to pack the education dummies into a factor and use that factor in R 
rather than playing around choosing to put in some but not all.  This also takes care of 
automatically dropping one of the dummies (to use it as comparison).  Consider these 
examples: 
model1wrong <- lm(WSAL_VAL ~ educ_hs + educ_smcoll + educ_as + 

educ_bach + educ_adv,  data = dat_use) 

summary(model1wrong) 

model2wrong <- lm(WSAL_VAL ~ educ_nohs + educ_hs + educ_smcoll + 

educ_as + educ_bach + educ_adv,  data = dat_use) 

summary(model2wrong) 

model3wrong <- lm(WSAL_VAL ~ educ_hs + educ_bach,  data = 

dat_use) 



summary(model3wrong) 

In general it is better to use underlying continuous variables if you have them (e.g. for 
sports, net points scored rather than win/loss) – this is the basic intuition that there is no need 
to throw out information.  On the other hand this imposes assumptions about linearity which 
might be inappropriate.  For example, 

model_continuousAge <- lm(WSAL_VAL ~ Age,  data = dat_use) 

summary(model_continuousAge) 

Age_factr <- cut(dat_use$Age,breaks=25:55) 

model_factrAge <-lm(WSAL_VAL ~ Age_factr,  data = dat_use) 

summary(model_factrAge) 

plot(coef(model_factrAge)) 

 

Multiple Dummy Variables 

Multiple dummy variables, D1,i , D2,i , …,DJ,i, operate on the same basic principle.  Of 
course we can then have many further interactions!  Suppose we have dummies for education 
and immigrant status.  The coefficient on education would tell us how the typical person 
(whether immigrant or native) fares, while the coefficient on immigrant would tell us how the 
typical immigrant (whatever her education) fares.  An interaction of “more than Bachelor’s 
degree” with “Immigrant” would tell how the typical highly-educated immigrant would do 
beyond how the “typical immigrant” and “typical highly-educated” person would do (which 
might be different, for both ends of the education scale).   

Many, Many Dummy Variables 

Often it is sensible to use lots of dummy variables.  For example regressions to explain 
people's wages might use dummy variables for the industry in which a person works.  
Regressions about financial data such as stock prices might include dummies for the days of 
the week and months of the year. 

Dummies for industries are often denoted with labels like "two-digit" or "three-digit" or 
similar jargon.  To understand this, you need to understand how the government classifies 
industries.  A specific industry might get a 4-digit code where each digit makes a further more 
detailed classification.  The first digit refers to the broad section of the economy, as goods pass 
from the first producers (farmers and miners, first digit zero) to manufacturers (1 in the first 
digit for non-durable manufacturers such as meat processing, 2 for durable manufacturing, 3 
for higher-tech goods) to transportation, communications and utilities (4), to wholesale trade 
(5) then retail (6).  The 7's begin with FIRE (Finance, Insurance, and Real Estate) then services in 
the later 7 and early 8 digits while the 9 is for governments.  The second and third digits give 
more detail: e.g. 377 is for sawmills, 378 for plywood and engineered wood, 379 for 
prefabricated wood homes.  Some data sets might give you 5-digit or even 6-digit information.  



These classifications date back to the 1930s and 1940s so some parts show their age: the ever-
increasing number of computer parts go where plain "office supplies" used to be.   

The CPS data distinguishes between "major industries" with 16 categories and "detailed 
industry" with about 50.   

Creating 50 dummy variables could be tiresome so that's where R's "factor" data 
type comes in handy.  Just add in a factor into your OLS model and let R take care of the rest.  
So toss in A_DTIND and A_DTOCC.  So add these lines and fire away, 

det_ind <- as.factor(A_DTIND) 

det_occ <- as.factor(A_DTOCC) 

In other models such as predictions of sales, the specification might include a time 
trend (as discussed earlier) plus dummy variables for days of the week or months of the year, 
to represent the typical sales for, say, "a Monday in June".  

Why are we doing all of this?  Because I want you to realize all of the choices that go 
into creating a regression or doing just about anything with data.  There are a host of choices 
available to you.  Some choices are rather conventional (for example, the education 
breakdown I used above) but you need to know the field in order to know what assumptions 
are common.  Sometimes these commonplace assumptions conceal important information.  
You want to do enough experimentation to understand which of your choices are crucial to 
your results.  Then you can begin to understand how people might analyze the exact same 
data but come to varying conclusions.  If your results contradict someone else's, then you have 
to figure out what are the important assumptions that create the difference. 

Panel Data 

A panel of data contains repeated observations of a single economic unit over time.  
This might be a survey like the CPS where the same person is surveyed each month to 
investigate changes in their labor market status.  There are medical panels that have given 
annual exams to the same people for decades.  Publicly-traded firms that file their annual 
reports can provide a panel of data: revenue and sales for many years at many different firms.  
Sometimes data covers larger blocks such as states in the US or, if we're looking at 
macroeconomic development, even countries over time. 

Other data sets are just cross-sectional, like the March CPS that we've used.  If we put 
together a series of cross-sectional samples that don't follow the same people (so we use the 
March 2012, 2011, and 2010 CPS samples) then we have a pooled sample.  A long stream of 
data on a single unit is a time series (for example US Industrial Production or the daily returns 
on a single stock). 

In panel data we want to distinguish time from unit effects.  Suppose that you are 
analyzing sales data for a large company's many stores.  You want to figure out which stores 
are well-managed.  You know that there are macro trends: some years are good and some are 



rough, so you don't want to indiscriminately reward everybody in good years (when they just 
got lucky) and punish them in bad years (when they got unlucky).  There are also location 
effects: a store with a good location will get more traffic and sell more, regardless.  So you 
might consider subtracting the average sales of a particular location away from current sales, 
to look at deviations from its usual.  After doing this for all of the stores, you could subtract off 
the average deviation at a particular time, too, to account for year effects (if everyone 
outperforms their usual sales by 10% then it might just indicate a good economy).  You would 
be left with a store's "unusual" sales – better or worse than what would have been predicted for 
a given store location in that given year. 

A regression takes this even further to use all of our usual "prediction" variables in the 
list of X, and combine these with time and unit fixed effects. 

Now the notation begins.  Let the t-subscript index time; let j index the unit.  So any 

observations of y and x must be at a particular date and unit; we have ,t jy  and then the k x-

variables are each ,

k

t jx  (the superscript for which of the x-variables).  So the regression 

equation is 
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where j  (alpha) is the fixed effect for each unit j, t  (gamma) is the time effect, and 

then the error is unique to each unit at each time. 

This is actually easy to implement, even though the notation might look formidable.  
Just create a dummy variable for each time period and another dummy for each unit and put 
the whole slew of dummies into the regression. 

So, to take a tiny example, suppose you have 8 store locations over 10 years, 1999-
2008.  You have data on sales (Y) and advertising spending (X) and want to look at the 
relationship between this simple X and Y.  So the data look like this: 

X1999,1 X1999,2 X1999,3 X1999,4 X1999,5 X1999,6 X1999,7 X1999,8 

X2000,1 X2000,2 X2000,3 X2000,4 X2000,5 X2000,6 X2000,7 X2000,8 

X2001,1 X2001,2 X2001,3 X2001,4 X2001,5 X2001,6 X2001,7 X2001,8 

X2002,1 X2002,2 X2002,3 X2002,4 X2002,5 X2002,6 X2002,7 X2002,8 

X2003,1 X2003,2 X2003,3 X2003,4 X2003,5 X2003,6 X2003,7 X2003,8 

X2004,1 X2004,2 X2004,3 X2004,4 X2004,5 X2004,6 X2004,7 X2004,8 

X2005,1 X2005,2 X2005,3 X2005,4 X2005,5 X2005,6 X2005,7 X2005,8 

X2006,1 X2006,2 X2006,3 X2006,4 X2006,5 X2006,6 X2006,7 X2006,8 

X2007,1 X2007,2 X2007,3 X2007,4 X2007,5 X2007,6 X2007,7 X2007,8 

X2008,1 X2008,2 X2008,3 X2008,4 X2008,5 X2008,6 X2008,7 X2008,8 

and similarly for the Y-variables.  To do the regression, create 9 time dummy variables: 
D2000, D2001, D2002, D2003, D2004, D2005, D2006, D2007, and D2008.  Then create 7 unit 



dummies, D2, D3, D4, D5, D6, D7, and D8.  Then regress the Y on X and these 16 dummy 
variables. 

Then the interpretation of the coefficient on the X variable is the amount by which an 
increase in X, above its usual value for that unit and above the usual amount for a given year, 
would increase Y. 

One drawback of this type of estimation is that it is not very useful for forecasting, 
either to try to figure out the sales at some new location or what will be sales overall next year 
– since we don't know either the new location's fixed effect (the coefficient on D9 or its alpha) 
or we don't know next year's dummy coefficient (on D2009 or its gamma).  

We also cannot put in a variable that varies only on one dimension – for example, we 
can't add any other information about store location that doesn't vary over time, like its 
distance from the other stores or other location information.  All of that variation is swept up in 
the firm-level fixed effect.  Similarly we can't include macro data that doesn't vary across firm 
locations like US GDP since all of that variation is collected into the time dummies. 

You can get much fancier; there is a whole econometric literature on panel data 
estimation methods.  But simple fixed effects, put into the same OLS regression that we've 
become accustomed to, can actually get you far. 

Multi-Level Modeling 

After Fixed Effects, we can generalize to Multi-Level Modeling (much of my explanation is based on 

the excellent book, Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman & Jennifer Hill).  From the 
wage regressions based on CPS data that we were using, we can consider adding information 
about the person's occupation (the data gives a rough grouping of people into about 20 
occupations).  You've probably done a version of this regression in your head, if you've ever 
read someone's job title and tried to figure out how much she makes. 

There are a few ways to use the occupation data.  One way is to ignore it, to not use it – 
which is what we were doing when we left it out of the regression.  Everyone started from the 
same value.  Gelman & Hill call this the "pooling" estimator since it pools everyone together.  
Another way would be to put in fixed effects for each occupation, letting each vary as needed – 
every occupation has a different intercept term, starting from a different value.  This is "no-
pooling."  This puts no constraints at all on what the intercepts might be – some high, some 
low, some way far afield.  A multilevel model imposes a model on how those intercepts vary: 
usually that they have a normal distribution with a central mean and variance.  The math to 
define the estimator gets a bit more complicated, but we let the computer worry about that.  
But it's basically a weighted average of the "pooled" and "no-pooled" estimates, where the 
number of people reporting being in that particular group give the weights.  So groups with a 
lot of members get nearly that "no-pooled" estimate, while a group with few members would 
be estimated to be like the larger group. 



So in this example, the pooling case has wages of person i in industry j explained as 
𝑤𝑖,𝑗 = 𝛼 + 𝛽𝑋𝑖,𝑗 + 𝑒𝑖,𝑗  (where the X includes all the rest of the variables, lumped together).  

The no-pooling case has 𝑤𝑖,𝑗 = 𝛼𝑗 + 𝛽𝑋𝑖,𝑗 + 𝑒𝑖,𝑗  so the intercept varies by industry, j.  The 

multilevel case has 𝑤𝑖,𝑗 = 𝛼0 + 𝛼[𝑗] + 𝛽𝑋𝑖,𝑗 + 𝑒𝑖,𝑗  but 𝛼[𝑗]~𝑁(0, 𝜎𝛼). 

With just a single level (like Occupation) this doesn't seem like a big thing, but if we 
want to define a lot of levels (Occupation, Industry, State or even City) then this gets more 
important.  Instead of estimating a separate parameter for each level, we can estimate just 
overall parameters – and levels with only a small number of observations will be partially 
pooled. 

Once we decide we want to do such a thing, the remaining question is, "how?"  With R 
it's easy, just lmer() instead of lm().   
modelmm1 <- lmer(WSAL_VAL ~ as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 

summary(modelmm1) 

 

modelmm2 <- lmer(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  

               + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv  

               + married + divwidsep + union_m + veteran + immigrant + immig2gen 

              + as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 

summary(modelmm2) 

In these cases we can compute the Intra-Class Correlation (ICC) which is the ratio of the 

variance in the groups (𝜎𝛼) to the total variance, so 
𝜎𝛼

𝜎𝛼+𝜎𝜖
.  Kind of like R2, this goes from zero to 

one and is graded on a curve.  It tells how important the within-group variation is, relative to 
the total variation.  

Of course the next step would be to expand these coefficient estimates to be for slope 

as well as intercept – something like 𝑤𝑖,𝑗 = 𝛼0 + 𝛼[𝑗] + (𝛽0 + 𝛽[𝑗])𝑋𝑖,𝑗 + 𝑒𝑖,𝑗.  Multilevel 

modeling is a growing trend within econometrics. 

 

 
 

  



# cps_1.R 

# looking at CPS 2013 data 

# uses file from dataferret download of CPS March 2013 supplement, 

downloaded June 12 2014 

# accompanying lecture notes for KFoster class ECO B2000 in fall 2014 at 

CCNY 

 

rm(list = ls(all = TRUE)) 

setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 

load("cps_mar2013.RData") 

 

attach(dat_CPSMar2013) 

# use prime-age,fulltime, yearround workers 

use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 

dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 

 

detach(dat_CPSMar2013) 

 

attach(dat_use) # just prime-age,fulltime, yearround workers 

 

# always a good idea to get basic stats of all of the variables in your 

regression to see if they make sense 

summary(WSAL_VAL) 

summary(Age) 

summary(female) 

summary(AfAm) 

summary(Asian) 

summary(Amindian) 

summary(race_oth) 

summary(Hispanic) 

summary(educ_hs) 

summary(educ_smcoll) 

summary(educ_as) 

summary(educ_bach) 

summary(educ_adv) 

summary(married) 

summary(divwidsep) 

summary(union_m) 

summary(veteran) 

summary(immigrant) 

summary(immig2gen) 

 

model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

 

summary(model1) 

coeftest(model1) 

#sometimes log form is preferred 

# dat_noZeroWage <- subset(dat_use,(WSAL_VAL > 0)) 

# model1a <- lm(log(WSAL_VAL) ~ Age + female + AfAm + Asian + Amindian + 

race_oth  

#              + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  



#              + married + divwidsep + union_m + veteran + immigrant + 

immig2gen, data = dat_noZeroWage) 

# detach(dat_use) 

# attach(dat_noZeroWage) 

# log(mean(WSAL_VAL)) 

# mean(log(WSAL_VAL)) 

# detach(dat_noZeroWage) 

# attach(dat_use) 

# ^^ yes there are more elegant ways to do that, avoiding attach/detach - 

find them! 

 

# for heteroskedasticity consistent errors 

require(sandwich) 

require(lmtest) 

 

coeftest(model1,vcovHC) 

 

# jam nonlinear into linear regression 

model2 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 

race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

 

model3 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + I(female*Age) + 

I(female*(Age^2)) + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen) 

# could do this with "update" function instead 

summary(model2) 

summary(model3) 

# the ANOVA function is flexible - can compare nested models 

anova(model1,model2,model3) 

 

# Applied Econometrics in R suggests also spline and kernel estimators, we 

might get to that later 

 

# subset in order to plot... 

NNobs <- length(WSAL_VAL) 

set.seed(12345) # just so you can replicate and get same "random" choices 

graph_obs <- (runif(NNobs) < 0.1) # so something like 4000 obs 

dat_graph <-subset(dat_use,graph_obs)   

 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), data = dat_graph) 

# ^^ that looks like crap since Wages are soooooooo skew!  So try to find 

ylim = c(0, ??) 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), ylim = c(0,150000), data = dat_graph) 

 

# to plot the predicted values might want to do something like, 

lines(fitted.values(model2) ~ Age) 

# but that will plot ALLLLL the values, which is 4500 too many and looks 

awful 



# so back to this, 

to_be_predicted2 <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 0, 

Amindian = 1, race_oth = 1,  

                              Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                              married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted2$yhat <- predict(model2, newdata = to_be_predicted2) 

 

lines(yhat ~ Age, data = to_be_predicted2) 

 

# now compare model3 

to_be_predicted3m <- data.frame(Age = 25:55, female = 0, AfAm = 0, Asian = 

0, Amindian = 1, race_oth = 1,  

                               Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                               married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted3m$yhat <- predict(model3, newdata = to_be_predicted3m) 

 

to_be_predicted3f <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 

0, Amindian = 1, race_oth = 1,  

                                Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 

educ_as = 0, educ_bach = 1, educ_adv = 0, 

                                married = 0, divwidsep =0, union_m = 0, 

veteran = 0, immigrant = 0, immig2gen = 1) 

to_be_predicted3f$yhat <- predict(model3, newdata = to_be_predicted3f) 

 

plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 

alpha = 0.02), ylim = c(0,150000), xlab = "Age", data = dat_graph) 

lines(yhat ~ Age, data = to_be_predicted3f) 

lines(yhat ~ Age, data = to_be_predicted3m, lty = 2) 

legend("topleft", c("male", "female"), lty = c(2,1), bty = "n") 

 

det_ind <- as.factor(A_DTIND) 

det_occ <- as.factor(A_DTOCC) 

 

model4 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 

race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen 

             + det_ind + det_occ) 

summary(model4) 

 

# and always remember this part... 

detach(dat_use) 

 

 
# cps_2.R 

# looking at CPS 2013 data 

# uses file from dataferret download of CPS March 2013 supplement, 

downloaded June 12 2014 

# accompanying lecture notes for KFoster class ECO B2000 in fall 2014 at 

CCNY 



 

rm(list = ls(all = TRUE)) 

setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 

load("cps_mar2013.RData") 

 

attach(dat_CPSMar2013) 

# use prime-age,fulltime, yearround workers 

use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 

dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 

 

detach(dat_CPSMar2013) 

 

# create a single index variable (factor) from education dummies 

# educ_indx <- as.factor(educ_nohs + 2*educ_hs + 3*educ_smcoll + 4*educ_as + 

5*educ_bach + 6*educ_adv) 

# levels(educ_indx)[1] <- "No HS" 

# levels(educ_indx)[2] <- "HS" 

# levels(educ_indx)[3] <- "Some Coll" 

# levels(educ_indx)[4] <- "AS" 

# levels(educ_indx)[5] <- "Bach" 

# levels(educ_indx)[6] <- "Adv Deg" 

# levels(educ_indx) 

 

attach(dat_use) # just prime-age,fulltime, yearround workers 

# will look at some info by industry so look how wage varies by ind: 

by(WSAL_VAL, A_DTOCC, summary) 

plot(as.factor(female) ~ A_DTOCC) 

 

detach(dat_use) 

# A_DTOCC values: 

# 1 'Management occupations'  

# 2 'Business and financial operations occupations'  

# 3 'Computer and mathematical science occupations'  

# 4 'Architecture and engineering occupations'  

# 5 'Life, physical, and social service occupations'  

# 6 'Community and social service occupations'  

# 7 'Legal occupations'  

# 8 'Education, training, and library occupations'  

# 9 'Arts, design, entertainment, sports, and media occupations'  

# 10 'Healthcare practitioner and technical occupations'  

# 11 'Healthcare support occupations'  

# 12 'Protective service occupations'  

# 13 'Food preparation and serving related occupations'  

# 14 'Building and grounds cleaning and maintenance occupations'  

# 15 'Personal care and service occupations'  

# 16 'Sales and related occupations'  

# 17 'Office and administrative support occupations'  

# 18 'Farming, fishing, and forestry occupations'  

# 19 'Construction and extraction occupations'  

# 20 'Installation, maintenance, and repair occupations'  

# 21 'Production occupations'  

# 22 'Transportation and material moving occupations'  

# 23 'Armed Forces'  

 

 

 

# for heteroskedasticity consistent errors 



require(sandwich) 

require(lmtest) 

 

 

model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen,  data = dat_use) 

summary(model1) 

coeftest(model1,vcovHC) 

 

# can do it wrong... 

model1wrong <- lm(WSAL_VAL ~ educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv,  data = dat_use) 

summary(model1wrong) 

model2wrong <- lm(WSAL_VAL ~ educ_nohs + educ_hs + educ_smcoll + educ_as + 

educ_bach + educ_adv,  data = dat_use) 

summary(model2wrong) 

model3wrong <- lm(WSAL_VAL ~ educ_hs + educ_bach,  data = dat_use) 

summary(model3wrong) 

# model1 leaves out varbs;  

# model2 creates perfect multicollinearity with too many dummies;  

# model3 has too few dummies 

 

# example with Age 

model_continuousAge <- lm(WSAL_VAL ~ Age,  data = dat_use) 

summary(model_continuousAge) 

Age_factr <- cut(dat_use$Age,breaks=25:55) 

model_factrAge <-lm(WSAL_VAL ~ Age_factr,  data = dat_use) 

summary(model_factrAge) 

plot(coef(model_factrAge)) 

 

model2 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  

             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

             + married + divwidsep + union_m + veteran + immigrant + 

immig2gen 

             + as.factor(A_DTOCC), data = dat_use) 

summary(model2) 

coeftest(model2,vcovHC) 

 

require(lme4) 

# next use multilevel based on industry A_DTOCC 

modelmm1 <- lmer(WSAL_VAL ~ as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), 

dat_use) 

summary(modelmm1) 

 

modelmm2 <- lmer(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + 

race_oth  

               + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 

educ_adv  

               + married + divwidsep + union_m + veteran + immigrant + 

immig2gen 

              + as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 

summary(modelmm2) 



 


