Lecture Notes g

Binary Dependent with Trees and Forests

With Tree Models (from computer science) the emphasis is on prediction not
necessarily causation. This can make economists crazy although it can also be a good way to
get at causation — are there certain "features" (which is the term that computer science uses
instead of 'explanatory variables') that can easily classify some outcome? This can be part of a
data description or modeling exercise.

An R program to predict whether a person is covered by employer-provided health

insurance is:

library('rpart')

# tree model of whether has health insurance

modell <- rpart(health ins ~ Age + I(Age”2) + female + AfAm + Asian +
Amindian + race oth + Hispanic + educ_hs + educ_smcoll + educ as +
educ_bach + educ_adv + married + divwidsep + union m + veteran +
immigrant + immig2gen,data = dat use hi)

summary (modell)

plot (modell)

text (modell, use.n = TRUE, all=TRUE, cex=.8)

We could improve this method by going back to the idea that we discussed with k-nn,
where we split into training and evaluation sets — use 80% of the data to train the tree, then see
how well it would classify the remaining 20%. This helps if you worry about overfitting.

Random Forests are more complex although they can offer improvements to
classification accuracy. They are notoriously difficult to understand or explain, however — they
are often mostly a "black box". Nevertheless they can be a useful method of classification even
if as a comparison — if a random forest model classifies A% correctly while your preferred
model gets B%, then the difference (A-B) can be a useful way to assess how good is the model.

The idea of a Random Forest is to take a randomly-chosen sub-set of the data and build
a tree model from it. Then take another randomly-chosen sub-set and build another tree. And
another and another... Take these trees and aggregate them (perhaps build 10 trees and figure
out if 7imply one outcome whereas 3 imply the other outcome). (These are random subsets of
your 80% training set.)

# random Forest

library ('randomForest')
set.seed (54321)

# the command system.time() tells how long it takes
system.time (model3 <- randomForest (as.factor (health ins) ~ .,
data=dat cps rf, importance=TRUE, proximity=TRUE))

print (model3)




round (importance (model3), 2)
varImpPlot (model3)

The random Forest gives a "Confusion matrix" comparing the ones that are truly o/1
versus what is predicted:

actual o actual1
predicted o 1558 1961
predicted 1 806 9988
The previous logit model gives results of:
actual o actual 1
predicted o 5363 3415
predicted 1 15261 61094

The numbers of observations are different because | had clipped the size of the data for the
random forest in order to economize on computing time. So it's not apples-to-apples but
skewed in favor of logit. But if we look at the fraction in each class, we see that:

random forest logit model
actual o actual 1 actual o actuala
predicted o 0.109 0.137 0.063 0.040
predicted 1 0.056 0.698 0.179 0.718

So the random forest mis-classified 19.3% of the observations while the logit model mis-
classified 21.9% - so even with nearly six times more observations, the logit was a worse fit
overall. (You can tweak both methods to do better, maybe a forest of conditional inference
trees would be better or you can better specify the logit. These results are illustrative.)

Random forests can also be done for regression problems — the dependent variable
need not be o/1 as above but can be a continuous variable.

These methods are still relatively new in economics; see Hal Varian's piece on Big Data:
New Tricks for Econometrics.

Experiments and Quasi-Experiments
e ideal: double-blind random sort into treatment and base sets
e differences estimator for "natural experiments" or quasi-experiments
e Problems can be internal:
o incomplete randomization
o failure to follow treatment protocol
o attrition
o experiment (Hawthorne) effects
e orexternal
o non-representative sample
O non-rep program
o treatment/eligibility
o general equilibrium effects



Factor Analysis

Another common procedure, particularly in finance, is a factor analysis. This asks
whether a variety of different variables can be well explained by common factors. Sometimes
when it's not clear about the direction of causality, or where the modeler does not want to
impose an assumption of causality, this can be a way to express how much variation is
common. As an example, one price that people often see, which changes very often, is the
price of gasoline. If you have data on the prices at different gas stations over a long period of
time, you would basically see that while the prices are not identical, they move together over
time. This is not surprising since the price of oil fluctuates. There might be interesting
variation that at some times certain stations might be more or less responsive to price changes
—but overall the story would be that there is a common influence.

Factor Analysis (and the related technique of Principal Components Analysis, PCA) are not
model-based and can be useful methods of exploration. An example might be the easiest way
to see how it works.

| got daily data from Federal Reserve on Eurodollar interest rates for 1-, 3-, and 6-months, from
1971-2014 (so called since it was originally the rate to borrow dollars from a bank in London,
which remains the center of this market).

prcompl <- prcomp(~ edlm + ed3m + edébm, data = data 2)
summary (prcompl)

Which shows that the first principal component explains 99.7% of the variation in these
interest rates.

(With a wider span of maturities, we often find that 3 factors explain most interest rate
movements: level, slope, and curvature.)

Spike & Slab, Lasso, LOESS

There are many other regression techniques.

| should have mentioned LOESS (local estimation with polynomials, not the kind of
soil!) back with nonparametric regression, it is a form of that — where we think there is some
smooth function y = f(x) but we want to estimate a very generic function, f(). Unlike the
nonparametric estimation previously it is much less computationally intensive (so runs much
faster). The main limitation for our purposes is that X can have at most 4 variables, which must
all be continuous.

model loessl <- loess (WSAL VAL ~ Age,data3)

y loessl pred <- predict(model loessl, data.frame(Age = seqg(25, 55, 1)), se
= TRUE)

plot (seq(25, 55, 1),y loessl predSfit)

Lasso and Spike and Slab are both used for selecting which variables are "important" in
predicting. Note as usual that important in prediction might not be the same as causal,
however again we can explore the data to see. Both techniques will pare off X-variables that
do not contribute much predictive value to the regression. In cases where we have very few
observations (i.e. most of macro), these would not be appropriate, however in cases with



dense data then it is reasonable to consider — if your variable of interest is not selected for
prediction, then you have to think about why.

Much of the impetus for developing these sorts of models comes from either websites (that
get arrays of data streaming through, and try to figure out which have any predictive value) or
genomics (which have huge numbers of candidate genetic markers, and try to figure out which
have predictive value).

Lasso is Least Absolute Shrinkage and Selection Operator, and in R is usually
implemented with the 1ars package.

This finds coefficients that not only minimize the squared residuals (just like OLS) but
also tries to minimize the squared coefficient sizes — so it penalizes 'too many' explanatory
variables. In machine learning this is a way of finding efficient predictors but for our purposes
it helps to see which variables are important in the model.

x varb <- cbind(Age, I (Age”2), female, AfAm, Asian, Amindian,race_ oth,
Hispanic, educ_hs, educ_smcoll, educ_as, educ bach, educ adv,
married, divwidsep, union m, veteran, immigrant, immig2gen)

require (lars)

model lars <- lars(x_varb,WSAL VAL)

summary (model lars)

plot (model lars)

coef (model lars)

We can get an idea of how it classifies the importance of the different factors from our
basic wage regression,
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Spike and Slab (the name refers to the Bayesian prior distributions about coefficients) is
implemented in R with the spikeslab package. Scott and Varian (2012) refer to the "fat
regression" problem where there are more possible explanatory variables than there are
observations —there is a severe problem with degrees of freedom. The "spike" refers to the
probability that a particular variable is in the model (there is either a 0 or a 1 to select that
particular explanatory variable) while the "slab" is the information from the coefficient
estimates.

This is another way to gauge the importance of various parts of your model, particularly
in cases if there are lots of interactions.



A linear regression with a lot of interactions (returning to our usual CPS wage
regression) could include this,

modelcompare <- 1lm(WSAL VAL ~ (Age + I(Age”2) + female + AfAm + Asian +
Amindian + race oth + Hispanic + educ_hs + educ_smcoll + educ as +
educ_bach + educ _adv + married + divwidsep + union m + veteran +
immigrant + immig2gen) "2 + (industry f + occupatn f +
state f)*female, data = dat_8)

summary (modelcompare)

Whereas a version with spike and slab would use this code,

require (spikeslab)

set.seed (54321)

modell spikeslab <- spikeslab (WSAL VAL ~ (Age + I(Age”2) + female + AfAm +
Asian + Amindian + race oth + Hispanic + educ_hs + educ smcoll +
educ_as + educ _bach + educ_adv + married + divwidsep + union m +
veteran + immigrant + immig2gen) *2 + (industry f + occupatn f +
state f)*female, data = dat_ 8)

summary (modell spikeslab)

print (modell spikeslab)

plot (modell spikeslab)

Both will keep your computer running for a while! Note the "set.seed" sets the random
number generator so that, if you try it again, you'll get the same output as | did.

The picture is tough to interpret given so many lines,
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Other than that there are only a few that really stand out. The "print" call will give the
coefficient estimates from this model; the top of that print is:
---> Top variables:

bma gnet bma.scale gnet.scale
Age:educ_adv 16690.17  17715.13  1123.054  1192.021
Age:educ_bach 8792.73 11872.62 485.761 655.912

Age 7020.34  7152.103 817.248 832.587
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occupatn_fizy -6143.29  -6595.35  -18991.2  -20388.7

occupatn_f8 -5395.99  -5487.32  -23699.6  -24100.8
occupatn_fio 4805.165 4645705 20435.86  19757.69
occupatn_f6 -4621.3  -4926.29 -33460.7  -35668.9
occupatn_f21 -4546.55 -4899.63  -18791.1  -20250.4
occupatn_f22 -4533.39  -4921.73  -19702.5  -21390.3
female:occupatn_fio  -4424.35  -4457.37 -22250  -22416.1

Where the "bma" (Bayesian Model Averaging) and "gnet" (the generalized elastic net, with
penalty parameters for coefficients) refer to different estimation methods; the first two
columns are coefficients for the normalized values of the x-variables (with mean o and std dev
1) while the last two columns are the usual coefficient estimates.

From looking at the top ones most likely to be selected for inclusion in the model, we
see that the first 2 most important variables are age interacted with education measures, then
age, then various occupation categories. This is similar to the LASSO that implied that
education was most important.

(If you learn nothing else from this course, learn that the data show that education is important! Although, you know, probably
because people with more education actually learn and remember the s*** that their professors say...)

Time Series
Basic definitions:
e firstdifference AYt=Yt-Yt-1

oy, - 3%

e percentchangeis t-1 and is approximately equal to In(Yt) — In(Yt-1) — this log
approximation is commonly used
e lags: the first lag of Yt is Yt.; second lagis Yi., etc.
e Autocorrelation: how strong is last period data related to this period? The
cov (Yt Y )

P =
autocorrelation coefficient is var(¥,) for each laglength, j. Sometimes plot a

graph of the autocorrelation coefficients for various j.

e Common assumption: Stationarity: a model that explains Y doesn't change over time —
the future is like the past, so there's some point to examining the past — a crucial
assumption in forecasting! But this is why we usually use stock returns not stock price —
the price is not likely stationary even if returns are. (Also often assume ergodic.)

e If autocorrelations are not zero, then OLS is not appropriate estimator if Xand Y are
both time series! The standard errors are a function of the autocorrelation terms so
cannot properly evaluate the regression.

e Seasonality is basically a regression with seasons (months, days, whatever) as dummy
variables. So could have
Y, = f, + fJanuary + g,February + g,March +...+ 5, November + u, - remember to



leave one dummy variable out! Or
Y, = 5, + S Monday + S, Tuesday +...+ £, Saturday +u, .

Types of Models
e AR(12)-autoregression with lag 1

Yo=5+ LY +4,

e Forecast error is one-step-ahead error

o Note that can re-write the AR(1) equation, by substituting Y, ; = B, + BY, , +U,,, as
Y, =B+ BB+ BY, +U ) +U, = B (1+ B)+ B2Y, + Bu,, +U,, then substitute in for
Y, , =0, + Y, ;+U_,, and soon. Sothe current value is a function of all past error
terms, Y, = B, (1+ B, + B +...+ B )+ U + BU, + BU_, +...+ Bu 1 |+ B]Y, ;. Note
that aslong as | B,| <1, the last term drops and the sums converge as T — .

e Reminder of convergent series: look at (1+ B+B+..+8 ), note that
B (1+,8l + B+ A+ ) =<,Bl + B+ + 1”1). Add and subtract B and fiddle the
parentheses to write (1+,B1 +B .+ ) =1+(ﬁ1 + B+ B+ 1”1)— A

Notate that ugly term (1+ B+B+. .+ ) =Z , then the equation says that

T+1
Z=1+BZ-p". Solve, Z-BZ=Z(1-B)=1-4",and Z = 11—1 Substitute
e
this into the previous equation for Y
1_ T+1
e Y =5 I : +[ut + U, + B, +...+,81Tut7T]+,BlTYt7T . As T —> o, the first term
!

1 , N pr
goesto £, ﬁ, the last term goes to zero, and the middle term is Zﬂl u,_. .
M 7=0

e If B =1 then none of the terms converge — the model becomes a random walk or

integrated with order 1, I(2) or has a unit root. (Can test for this, most common is
Augmented Dickey-Fuller ADF.)

o Alsorandom walk withtrend, soY; = o +yt +Y;_; + ¢

o Andrandom walk with drift, so Y; = By + Y;—; + € (but no trend)

o Orjustplainrandomwalk, Y; =Y;_; + ¢

e Random walk means that AR coefficients are biased toward zero, the t-statistics (and

therefore p-values) are unreliable, and we can have a "spurious regression" —two time
series that seem related only because both increase over time. Consider this case of
variables Xand Y, each of whichare Z; = 1 4+ Z;_; + € where € is a random draw from a

normal distribution.
rm(list = 1ls(all = TRUE))

const term <- 1
ar coeff <- 1
start val <- 100




num_terms <- 100

x val <- matrix(data = NA, nrow = num terms, ncol = 1)

y val <- matrix(data = NA, nrow = num terms, ncol = 1)

x val[l] <- start val

y val[l] <- start val

set.seed (12345)

x_rand <- rnorm(num_ terms, mean = 0, sd = 1)

y_rand <- rnorm(num_terms, mean = 0, sd = 1)

for (indx in 2:num terms) {
x val[indx] <- ar coeff*x val[indx - 1] + const term + x rand[indx]
y val[indx] <- ar coeff*y vallindx - 1] + const term + y rand[indx]

}

modell <- 1lm(y val ~ x val)
summary (modell)

(ar (y val)) #AR method

AR(p) — autoregression with lag p

ﬂ=%+ﬂm4+@ﬁ4+m+ﬁmw+w

ADL(p,q) — autoregressive distributed lag model with p lags of dependent variable and
q lags of an additional predictor, X.

Need usual assumptions for this model

Lag length? Some art; some science! Various criteria (AIC, BIC, given in text) to select
lag length.

Granger Causality — jargon meaning that X helps predict Y; more precisely X does not
Granger-cause Y if X does not help predict Y. If X does not help predict Y then it cannot
cause Y.

Trends provide non-stationary models

Random walk non-stationary model:

Breaks can also give non-stationary models

test for breaks, sup-Wald test

Cointegration "The Definitive Overview", ftp://ftp.econ.au.dk/creates/rp/14/rp1s 38.pdf
Can model time series as regression of Y on X, of In(Y) on In(X), of AY on AX, or of %AY
on %AX (where, recall, %AY = AlnY since the derivative of the log is the reciprocal) —
this is where the art comes in!

Distributed lag models can be complicated (Chapter 15) and so we want at a minimum
Heteroskedasticy and Autocorrelation Consistent (HAC) errors — like the
heteroskedasticity-consistent errors before (Newey-West)

VAR — Vector AutoRegression, incorporate k regressors and p lags so estimate as many
as k*p coefficients — these are classic in macro modeling, following work of Chris Sims



ftp://ftp.econ.au.dk/creates/rp/14/rp14_38.pdf

e GARCH models — Generalized AutoRegressive Conditional Heteroskedasticity models —
allow the variance of the error to change over time, depending on past errors — allows
"storms" of volatility followed by quiet (low-variance)

O Y =08 0f = Qg+ X, iy + Z?:l Bjai j GARCH(p,q)
o Combine with random walk analysis for IGARCH, etc

In R: read “Time Series Analysis with R” for a high-level overview of what's possible — that has
refs to various packages that you can study, as you figure out what exactly you want to do.
http://www.stats.uwo.ca/faculty/aim/tsar/

Methodology

As you get more experience with econometrics you can start to understand the old jokes about
why the discipline name includes "con" and "trics"! Ed Leamer has a classic paper, Let's Take
the 'Con' Out of Econometrics. Diedre McCloskey has been a persistent critic, e.g. in Knowledge
and Persuasion in Economics or The Trouble with Mathematics and Statistics in Economics. Chris
Sims wrote, Why are Econometricians so Little Help? Although Angrist and Pischke wrote
Mostly Harmless Econometrics. You can understand why so many econometricians advise,
"beware of econometricians."

More...

Econometrics goes on and on — there are thousands of techniques for new situations and new
conditions, especially now that computing power quickly increases the amount of calculations
that can be done. There is so much to learn!


http://www.stats.uwo.ca/faculty/aim/tsar/

