
Lecture Notes 9 

Econ B2000, Statistics and Introduction to Econometrics 

Kevin R Foster, the City College of New York, CUNY 

Fall 2014 

Binary Dependent with Trees and Forests 
 With Tree Models (from computer science) the emphasis is on prediction not 
necessarily causation.  This can make economists crazy although it can also be a good way to 
get at causation – are there certain "features" (which is the term that computer science uses 
instead of 'explanatory variables') that can easily classify some outcome?  This can be part of a 
data description or modeling exercise. 
 An R program to predict whether a person is covered by employer-provided health 
insurance is: 
library('rpart') 

# tree model of whether has health insurance 

model1 <- rpart(health_ins ~ Age + I(Age^2) + female + AfAm + Asian + 

Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + 

educ_bach + educ_adv + married + divwidsep + union_m + veteran + 

immigrant + immig2gen,data = dat_use_hi) 

summary(model1) 

plot(model1) 

text(model1, use.n = TRUE, all=TRUE, cex=.8) 

 We could improve this method by going back to the idea that we discussed with k-nn, 
where we split into training and evaluation sets – use 80% of the data to train the tree, then see 
how well it would classify the remaining 20%.  This helps if you worry about overfitting. 

Random Forests are more complex although they can offer improvements to 
classification accuracy.  They are notoriously difficult to understand or explain, however – they 
are often mostly a "black box".  Nevertheless they can be a useful method of classification even 
if as a comparison – if a random forest model classifies A% correctly while your preferred 
model gets B%, then the difference (A-B) can be a useful way to assess how good is the model. 
 The idea of a Random Forest is to take a randomly-chosen sub-set of the data and build 
a tree model from it.  Then take another randomly-chosen sub-set and build another tree. And 
another and another…  Take these trees and aggregate them (perhaps build 10 trees and figure 
out if 7 imply one outcome whereas 3 imply the other outcome).  (These are random subsets of 
your 80% training set.) 
# random Forest 

library('randomForest') 

set.seed(54321) 

 

# the command system.time() tells how long it takes 

system.time(model3 <- randomForest(as.factor(health_ins) ~ ., 

data=dat_cps_rf, importance=TRUE, proximity=TRUE)) 

print(model3) 



round(importance(model3),2) 

varImpPlot(model3) 

 
The random Forest gives a "Confusion matrix" comparing the ones that are truly 0/1 

versus what is predicted: 
 actual 0 actual 1 

predicted 0 1558 1961 
predicted 1 806 9988 

The previous logit model gives results of: 
 actual 0 actual 1 

predicted 0 5363 3415 
predicted 1 15261 61094 

The numbers of observations are different because I had clipped the size of the data for the 
random forest in order to economize on computing time.  So it's not apples-to-apples but 
skewed in favor of logit.  But if we look at the fraction in each class, we see that: 

 random forest logit model 

 actual 0 actual 1 actual 0 actual 1 

predicted 0 0.109 0.137 0.063 0.040 

predicted 1 0.056 0.698 0.179 0.718 

So the random forest mis-classified 19.3% of the observations while the logit model mis-
classified 21.9% - so even with nearly six times more observations, the logit was a worse fit 
overall.  (You can tweak both methods to do better, maybe a forest of conditional inference 
trees would be better or you can better specify the logit.  These results are illustrative.) 
 Random forests can also be done for regression problems – the dependent variable 
need not be 0/1 as above but can be a continuous variable. 
 These methods are still relatively new in economics; see Hal Varian's piece on Big Data: 
New Tricks for Econometrics. 

Experiments and Quasi-Experiments 
 ideal: double-blind random sort into treatment and base sets 

 differences estimator for "natural experiments" or quasi-experiments 

 Problems can be internal: 
o incomplete randomization 
o failure to follow treatment protocol 
o attrition 
o experiment (Hawthorne) effects 

 or external 
o non-representative sample 
o non-rep program 
o treatment/eligibility 
o general equilibrium effects 

 



Factor Analysis 
Another common procedure, particularly in finance, is a factor analysis.  This asks 

whether a variety of different variables can be well explained by common factors.  Sometimes 
when it's not clear about the direction of causality, or where the modeler does not want to 
impose an assumption of causality, this can be a way to express how much variation is 
common.  As an example, one price that people often see, which changes very often, is the 
price of gasoline.  If you have data on the prices at different gas stations over a long period of 
time, you would basically see that while the prices are not identical, they move together over 
time.  This is not surprising since the price of oil fluctuates.  There might be interesting 
variation that at some times certain stations might be more or less responsive to price changes 
– but overall the story would be that there is a common influence. 
 
Factor Analysis (and the related technique of Principal Components Analysis, PCA) are not 
model-based and can be useful methods of exploration.  An example might be the easiest way 
to see how it works. 
 
I got daily data from Federal Reserve on Eurodollar interest rates for 1-, 3-, and 6-months, from 
1971-2014 (so called since it was originally the rate to borrow dollars from a bank in London, 
which remains the center of this market). 

prcomp1 <- prcomp(~ ed1m + ed3m + ed6m, data = data_2) 

summary(prcomp1) 

Which shows that the first principal component explains 99.7% of the variation in these 
interest rates. 
 
(With a wider span of maturities, we often find that 3 factors explain most interest rate 
movements: level, slope, and curvature.) 
 

Spike & Slab, Lasso, LOESS 
 There are many other regression techniques.  
 I should have mentioned LOESS (local estimation with polynomials, not the kind of 
soil!) back with nonparametric regression, it is a form of that – where we think there is some 
smooth function y = f(x) but we want to estimate a very generic function, f( ).  Unlike the 
nonparametric estimation previously it is much less computationally intensive (so runs much 
faster).  The main limitation for our purposes is that X can have at most 4 variables, which must 
all be continuous. 
model_loess1 <- loess(WSAL_VAL ~ Age,data3) 

y_loess1_pred <- predict(model_loess1, data.frame(Age = seq(25, 55, 1)), se 

= TRUE) 

plot(seq(25, 55, 1),y_loess1_pred$fit) 

Lasso and Spike and Slab are both used for selecting which variables are "important" in 
predicting.  Note as usual that important in prediction might not be the same as causal, 
however again we can explore the data to see.  Both techniques will pare off X-variables that 
do not contribute much predictive value to the regression.  In cases where we have very few 
observations (i.e. most of macro), these would not be appropriate, however in cases with 



dense data then it is reasonable to consider – if your variable of interest is not selected for 
prediction, then you have to think about why. 

Much of the impetus for developing these sorts of models comes from either websites (that 
get arrays of data streaming through, and try to figure out which have any predictive value) or 
genomics (which have huge numbers of candidate genetic markers, and try to figure out which 
have predictive value). 

Lasso is Least Absolute Shrinkage and Selection Operator, and in R is usually 
implemented with the lars package. 

This finds coefficients that not only minimize the squared residuals (just like OLS) but 
also tries to minimize the squared coefficient sizes – so it penalizes 'too many' explanatory 
variables.  In machine learning this is a way of finding efficient predictors but for our purposes 
it helps to see which variables are important in the model. 
x_varb <- cbind(Age,I(Age^2), female, AfAm, Asian, Amindian,race_oth,  

Hispanic, educ_hs, educ_smcoll, educ_as, educ_bach, educ_adv,  

married, divwidsep, union_m, veteran, immigrant, immig2gen) 

require(lars) 

model_lars <- lars(x_varb,WSAL_VAL) 

summary(model_lars) 

plot(model_lars) 

coef(model_lars) 

 
We can get an idea of how it classifies the importance of the different factors from our 

basic wage regression, 
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Spike and Slab (the name refers to the Bayesian prior distributions about coefficients) is 

implemented in R with the spikeslab package.  Scott and Varian (2012) refer to the "fat 
regression" problem where there are more possible explanatory variables than there are 
observations – there is a severe problem with degrees of freedom.  The "spike" refers to the 
probability that a particular variable is in the model (there is either a 0 or a 1 to select that 
particular explanatory variable) while the "slab" is the information from the coefficient 
estimates. 

This is another way to gauge the importance of various parts of your model, particularly 
in cases if there are lots of interactions. 



A linear regression with a lot of interactions (returning to our usual CPS wage 
regression) could include this, 
modelcompare <- lm(WSAL_VAL ~ (Age + I(Age^2) + female + AfAm + Asian + 

Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + 

educ_bach + educ_adv + married + divwidsep + union_m + veteran + 

immigrant + immig2gen) ^2 + (industry_f + occupatn_f + 

state_f)*female, data = dat_8) 

summary(modelcompare) 

 Whereas a version with spike and slab would use this code, 
require(spikeslab) 

set.seed(54321) 

model1_spikeslab <- spikeslab(WSAL_VAL ~ (Age + I(Age^2) + female + AfAm + 

Asian + Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + 

educ_as + educ_bach + educ_adv + married + divwidsep + union_m + 

veteran + immigrant + immig2gen) ^2 + (industry_f + occupatn_f + 

state_f)*female,  data = dat_8) 

summary(model1_spikeslab) 

print(model1_spikeslab) 

plot(model1_spikeslab) 

Both will keep your computer running for a while!  Note the "set.seed" sets the random 
number generator so that, if you try it again, you'll get the same output as I did. 
 

The picture is tough to interpret given so many lines, 

 
Other than that there are only a few that really stand out.  The "print" call will give the 
coefficient estimates from this model; the top of that print is: 

---> Top variables:    

 bma gnet bma.scale gnet.scale 

Age:educ_adv 16690.17 17715.13 1123.054 1192.021 

Age:educ_bach 8792.73 11872.62 485.761 655.912 

Age 7020.34 7152.103 817.248 832.587 



occupatn_f17 -6143.29 -6595.35 -18991.2 -20388.7 

occupatn_f8 -5395.99 -5487.32 -23699.6 -24100.8 

occupatn_f10 4805.165 4645.705 20435.86 19757.69 

occupatn_f6 -4621.3 -4926.29 -33460.7 -35668.9 

occupatn_f21 -4546.55 -4899.63 -18791.1 -20250.4 

occupatn_f22 -4533.39 -4921.73 -19702.5 -21390.3 

female:occupatn_f10 -4424.35 -4457.37 -22250 -22416.1 

Where the "bma" (Bayesian Model Averaging) and "gnet" (the generalized elastic net, with 
penalty parameters for coefficients) refer to different estimation methods; the first two 
columns are coefficients for the normalized values of the x-variables (with mean 0 and std dev 
1) while the last two columns are the usual coefficient estimates. 
 

From looking at the top ones most likely to be selected for inclusion in the model, we 
see that the first 2 most important variables are age interacted with education measures, then 
age, then various occupation categories.  This is similar to the LASSO that implied that 
education was most important. 
 
(If you learn nothing else from this course, learn that the data show that education is important!  Although, you know, probably 
because people with more education actually learn and remember the s*** that their professors say…) 

Time Series 
Basic definitions: 

 first difference Yt = Yt – Yt-1 

 percent change is 1

% t
t

t

Y
Y

Y 


 

 and is approximately equal to ln(Yt) – ln(Yt-1) – this log 
approximation is commonly used 

 lags: the first lag of Yt is Yt-1; second lag is Yt-2, etc. 

 Autocorrelation: how strong is last period data related to this period?  The 

autocorrelation coefficient is 
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 for each lag length, j.  Sometimes plot a 
graph of the autocorrelation coefficients for various j. 

 Common assumption: Stationarity: a model that explains Y doesn't change over time – 
the future is like the past, so there's some point to examining the past – a crucial 
assumption in forecasting!  But this is why we usually use stock returns not stock price – 
the price is not likely stationary even if returns are.  (Also often assume ergodic.) 

 If autocorrelations are not zero, then OLS is not appropriate estimator if X and Y are 
both time series!  The standard errors are a function of the autocorrelation terms so 
cannot properly evaluate the regression. 

 Seasonality is basically a regression with seasons (months, days, whatever) as dummy 
variables.  So could have 

0 1 2 3 11t tY January February March November u            - remember to 



leave one dummy variable out!  Or 

0 1 2 11t tY Monday Tuesday Saturday u         . 

 
Types of Models 

 AR(1) – autoregression with lag 1 

 0 1 1t t tY Y u    
 

 Forecast error is one-step-ahead error 

 Note that can re-write the AR(1) equation, by substituting 1 0 1 2 1t t tY Y u      , as 

    2

0 1 0 1 2 1 0 1 1 2 1 11t t t t t t tY Y u u Y u u                    , then substitute in for 

2 0 1 3 2t t tY Y u      , and so on.  So the current value is a function of all past error 

terms,  2 2

0 1 1 1 1 1 1 2 1 1 11 T T T

t t t t t T t TY u u u u Y           
             .  Note 

that as long as 1 1  , the last term drops and the sums converge  as T  . 

 Reminder of convergent series: look at  2

1 1 11 T      , note that 

   2 2 1

1 1 1 1 1 1 11 T T               .  Add and subtract 1

1

T   and fiddle the 

parentheses to write    2 2 1 1

1 1 1 1 1 1 1 11 1T T T T                   .  

Notate that ugly term  2

1 1 11 T Z       , then the equation says that 

1

1 11 TZ Z     .  Solve,   1
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this into the previous equation for Yt 
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 If 1 1   then none of the terms converge – the model becomes a random walk or 

integrated with order 1, I(1) or has a unit root.  (Can test for this, most common is 
Augmented Dickey-Fuller ADF.) 

o Also random walk with trend, so 𝑌𝑡 = 𝛽0 + 𝛾𝑡 + 𝑌𝑡−1 + 𝜀 
o And random walk with drift, so 𝑌𝑡 = 𝛽0 + 𝑌𝑡−1 + 𝜀  (but no trend) 
o Or just plain random walk, 𝑌𝑡 = 𝑌𝑡−1 + 𝜀 

 Random walk means that AR coefficients are biased toward zero, the t-statistics (and 
therefore p-values) are unreliable, and we can have a "spurious regression" – two time 
series that seem related only because both increase over time.  Consider this case of 
variables X and Y, each of which are 𝑍𝑡 = 1 + 𝑍𝑡−1 + 𝜀 where ε is a random draw from a 
normal distribution. 
rm(list = ls(all = TRUE)) 

 

const_term <- 1 

ar_coeff <- 1 

start_val <- 100 



num_terms <- 100 

 

x_val <- matrix(data = NA, nrow = num_terms, ncol = 1) 

y_val <- matrix(data = NA, nrow = num_terms, ncol = 1) 

 

x_val[1] <- start_val 

y_val[1] <- start_val 

 

set.seed(12345) 

x_rand <- rnorm(num_terms, mean = 0, sd = 1) 

y_rand <- rnorm(num_terms, mean = 0, sd = 1) 

 

for (indx in 2:num_terms) { 

  x_val[indx] <- ar_coeff*x_val[indx - 1] + const_term + x_rand[indx] 

  y_val[indx] <- ar_coeff*y_val[indx - 1] + const_term + y_rand[indx] 

} 

 

model1 <- lm(y_val ~ x_val) 

summary(model1) 

 

(ar(y_val)) #AR method 

 

 AR(p) – autoregression with lag p 

 0 1 1 2 2 ...t t t p t p tY Y Y Y u          
 

 ADL(p,q) – autoregressive distributed lag model with p lags of dependent variable and 
q lags of an additional predictor, X. 

 Need usual assumptions for this model 

 Lag length?  Some art; some science!  Various criteria (AIC, BIC, given in text) to select 
lag length. 

 Granger Causality – jargon meaning that X helps predict Y; more precisely X does not 
Granger-cause Y if X does not help predict Y.  If X does not help predict Y then it cannot 
cause Y. 

 Trends provide non-stationary models 

 Random walk non-stationary model: 

 Breaks can also give non-stationary models 

 test for breaks, sup-Wald test 

 Cointegration "The Definitive Overview", ftp://ftp.econ.au.dk/creates/rp/14/rp14_38.pdf  

 Can model time series as regression of Y on X, of ln(Y) on ln(X), of Y on X, or of %Y 

on %X (where, recall, %Y = lnY since the derivative of the log is the reciprocal) – 
this is where the art comes in! 

 Distributed lag models can be complicated (Chapter 15) and so we want at a minimum 
Heteroskedasticy and Autocorrelation Consistent (HAC) errors – like the 
heteroskedasticity-consistent errors before (Newey-West) 

 VAR – Vector AutoRegression, incorporate k regressors and p lags so estimate as many 
as k*p coefficients – these are classic in macro modeling, following work of Chris Sims 

ftp://ftp.econ.au.dk/creates/rp/14/rp14_38.pdf


 GARCH models – Generalized AutoRegressive Conditional Heteroskedasticity models – 
allow the variance of the error to change over time, depending on past errors – allows 
"storms" of volatility followed by quiet (low-variance) 

o 𝑦𝑡 = 𝜎𝑡𝜀𝑡;  𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑦𝑡−𝑖

𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1  GARCH(p,q) 

o Combine with random walk analysis for IGARCH, etc 
 
In R: read “Time Series Analysis with R” for a high-level overview of what’s possible – that has 
refs to various packages that you can study, as you figure out what exactly you want to do. 
http://www.stats.uwo.ca/faculty/aim/tsar/ 
 

Methodology 
As you get more experience with econometrics you can start to understand the old jokes about 
why the discipline name includes "con" and "trics"!  Ed Leamer has a classic paper, Let's Take 
the 'Con' Out of Econometrics.  Diedre McCloskey has been a persistent critic, e.g. in Knowledge 
and Persuasion in Economics or The Trouble with Mathematics and Statistics in Economics.  Chris 
Sims wrote, Why are Econometricians so Little Help?  Although Angrist and Pischke wrote 
Mostly Harmless Econometrics.  You can understand why so many econometricians advise, 
"beware of econometricians." 

More… 
Econometrics goes on and on – there are thousands of techniques for new situations and new 
conditions, especially now that computing power quickly increases the amount of calculations 
that can be done.  There is so much to learn! 
 
 

http://www.stats.uwo.ca/faculty/aim/tsar/

