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Why these lecture notes?  What is the value added over the textbook?  In my experience, 
econometrics textbooks are a great resource for "how" but not so useful for "why".  The textbook tells 
you how to perform various analyses but the motivation is left exogenous.  Of course for many 
students the motivation is simply to get a grade in a class, but I hope that I can convince you to be 
genuinely curious. 

A textbook is usually structured in the way a brick wall is built: one layer gradually built up on 
another, with the base made solid before going on.  My lectures on the other hand go in circles, 
making a quick dash into an advanced topic to pique your interest, then going back to fill in some of 
the basics, then dashing ahead again, sketching a link to another topic, generally just trying to be 
dynamic.  I will leave it to you to fill in some of the holes, once I have convinced you that it's 
worthwhile.  Learning has some aspects of prospect theory (which you should have done in micro 
theory) since prospect theory asks how people make rational decisions about completely unknown 
areas, trying to decide if it is worthwhile to invest in a blank spot – where one goal is to fill in the 
blanks.  In this case, many students don't know much about how useful econometrics is so I want to 
persuade you, both in class and through these notes. 

There is a reason that textbooks are this way: they try not to be wrong.  A textbook is supposed 
to be scripture, giving you the capital-T Truth; this tends to make rather dull reading.  These notes are 
more likely to be wrong.  A famous statistician, Prof Box, said all models are wrong, but some are 
useful.  So too with texts.  Some of this material might be wrong, much more of it is certainly 
arguable.  (As an example, statisticians hate the popular discussion of confidence intervals – but 
reading a true explanation is a real trial!)  Sometimes learning is not so much acquiring the Truth as 
progressing through a series of approximations, each one closer and better.  I hope you will become 
interested enough in the field to begin to argue and explore for yourself.  Any text that gets a student 
interested must be doing something right.  So please argue back at me. 

Structure The first section (up to Discrete & Continuous Random Variables) provides 
background: lots of material that is important, that we'll use in class and in homework assignments 
and exams, that is fundamental to your progress in the course – but isn't that hard to learn.  Parts may 
be a bit tedious but that's an occupational hazard.  Some parts will be review and you should feel free 
to skip or skim those parts.  The point is to get everybody up to a common level.  Just don't skip the 
part on how to use R (unless you already know that). The rest of the sections should get about to the 
end of class – but note that I may be updating the post-midterm sections.   

These notes are somewhat correlated with the Stock and Watson textbook, but are not a 
substitute – read both. 
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Beginning Notes 

Preliminary 

We begin with "Know Your Data" and "Show Your Data," to review some of the very initial 
components necessary for data analysis. 

The Challenge 

Humans are bad at statistics, we're just not wired to think this way.  Despite – or maybe, because of 
this, statistical thinking is enormously powerful and it can quickly take over your life.  Once you begin thinking 
like a statistician you will begin to see statistical applications to even your most mundane activities. 

Not only are humans bad at statistics but statistics seem to interfere with essential human feelings 
such as compassion. 

"A study by Small, Loewenstein, and Slovic (2007) … gave people leaving a psychological experiment the 
opportunity to contribute up to $5 of their earnings to Save the Children. In one condition respondents were asked to 
donate money to feed an identified victim, a seven-year-old African girl named Rokia. They contributed more than twice 
the amount given by a second group asked to donate to the same organization working to save millions of Africans from 
hunger (see Figure 2). A third group was asked to donate to Rokia, but was also shown the larger statistical problem 
(millions in need) shown to the second group. Unfortunately, coupling the statistical realities with Rokia’s story 
significantly reduced the contributions to Rokia. 

 

A follow-up experiment by Small et al. initially primed study participants either to feel (“Describe your feelings 
when you hear the word ‘baby,’” and similar items) or to do simple arithmetic calculations. Priming analytic thinking 
(calculation) reduced donations to the identifiable victim (Rokia) relative to the feeling-based thinking prime. Yet the two 
primes had no distinct effect on statistical victims, which is symptomatic of the difficulty in generating feelings for such 
victims." (Paul Slovic, Psychic Numbing and Genocide, November 2007, Psychological Science Agenda, 
http://www.apa.org/science/psa/slovic.html) 

Yet although we're not naturally good at statistics, it is very important for us to get better.  Consider 
all of the people who play the lottery or go to a casino, sacrificing their hard-earned money.  (Statistics 
questions are often best illustrated by gambling problems, in fact the science was pushed along by questions 
about card games and dice games.) 

Google, one of the world's most highly-regarded companies, famously uses statistics to guide even its 
smallest decisions: 

A designer, Jamie Divine, had picked out a blue that everyone on his team liked. But a product manager tested a 
different color with users and found they were more likely to click on the toolbar if it was painted a greener shade. 

As trivial as color choices might seem, clicks are a key part of Google’s revenue stream, and anything that 
enhances clicks means more money. Mr. Divine’s team resisted the greener hue, so Ms. Mayer split the difference by 
choosing a shade halfway between those of the two camps. 



Her decision was diplomatic, but it also amounted to relying on her gut rather than research. Since then, she said, 
she has asked her team to test the 41 gradations between the competing blues to see which ones consumers might prefer 
(Laura M Holson, "Putting a Bolder Face on Google" New York Times, Feb 28, 2009). 

Substantial benefits arise once you learn stats.  Specifically, if so many people are bad at it then 
gaining a skill in Statistics gives you a scarce ability – and, since Adam Smith, economists have known that 
scarcity brings value.  (And you might find it fun!) 

Leonard Mlodinow, in his book The Drunkard's Walk, attributes the fact that we humans are bad at 
statistics as due to our need to feel in control of our lives.  We don't like to acknowledge that so much of the 
world is genuinely random and uncontrollable, that many of our successes and failures might be due to 
chance.  When statisticians watch sports games, we don't believe sportscasters who discuss "that player just 
wanted it more" or other un-observable factors; we just believe that one team or the other got lucky. 

As an example, suppose we were to have 1000 people toss coins in the air – those who get "heads" 
earn a dollar, and the game is repeated 10 times.  It is likely that at least one person would flip "heads" all ten 
times.  That person might start to believe, "Hey, I'm a good heads-tosser, I'm really good!"  Somebody else is 
likely to have tossed "tails" ten times in a row – that person would probably be feeling stupid.  But both are 
just lucky.  And both have the same 50% chance of making "heads" on the next toss.  Einstein famously said 
that he didn't like to believe that God played dice with the universe – but many people look to the dice to see 
how God plays them. 

Of course we struggle to exert control over our lives and hope that our particular choices can 
determine outcomes.  But, as we begin to look at patterns of events due to many people's choices, then 
statistics become more powerful and more widely applicable.  Consider a financial market: each individual 
trade may be the result of two people each analyzing the other's offers, trying to figure out how hard to press 
for a bargain, working through reams of data and making tons of calculations.  But in aggregate, financial 
markets move randomly – if they did not then people could make a lot of money exploiting the patterns.  
Statistics help us both to see patterns in data that would otherwise see random and also to figure out when 
the patterns we observe are due to random chance.  Statistics is an incredibly powerful tool. 

Economics is a natural fit for statistical analysis since so much of our data is quantitative.  
Econometrics is the application of statistical analyses to economic problems.  In the words of John Tukey, a 
legendary pioneer, we believe in the importance of "quantitative knowledge – a belief that most of the key 
questions in our world sooner or later demand answers to by how much? rather than merely to in which 
direction?" 

This class 

In my experience, too many statistics classes get off to a slow start because they build up gradually 
and systematically.  That might not sound like a bad thing to you, but the problem is that you, the student, 
get answers to questions that you haven't yet asked.  It can be more helpful to jump right in and then, as 
questions arise, to answer those at the appropriate time.  We'll spend a lot of time getting on the computer 
and actually doing statistics.  

The class will not always closely follow the textbook, particularly at the beginning.  We will sometimes 
go in circles, first giving a simple answer but then returning to the most important questions for more study.  
The textbook proceeds gradually and systematically so you should read that to ensure that you've nailed 
down all of the details. 



Statistics and econometrics are ultimately used for persuasion.  First we want to persuade ourselves 
whether there is a relationship between some variables.  Next we want to persuade other people whether 
there is such a relationship.  Sometimes statistical theory can become quite Platonic in insisting that there is 
some ideal coefficient or relationship which can be discerned.  In this class we will try to keep this sort of 
discussion to a minimum while keeping the "persuasion" rationale uppermost. 

Step One: Know Your Data  

The first step in any examination of data is to know that data – where did it come from?  Who 
collected it?  What is the sample of?  What is being measured?  Sometimes you'll find people who don't even 
know the units! 

Economists often get figures in various units: levels, changes, percent changes (growth), log changes, 
annualized versions of each of those.  We need to be careful and keep the differences all straight. 

Annualized Data 

At the simplest level, consider if some economic variable is reported to have changed by 100 in a 
particular quarter.  As we make comparisons to previous changes, this is straightforward (was it more than 
100 last quarter? Less?).  But this has at least two possible meanings – only the footnotes or prior experience 
would tell the difference.  It could imply that the actual change was 100, so if the item continued to change at 
that same rate throughout the year, it would change by 400 after 4 quarters.  Or it could imply that the actual 
change was 25 and if the item continued to change at that same rate it would be 100 after 4 quarters – this is 
an annualized change.  Most GDP figures are annualized.  But you'd have to read the footnotes to make sure. 

This distinction holds for growth rates as well.  But annualizing growth rates is a bit more complicated 
than simply multiplying.  (These are also distinct from year-on-year changes.) 

CPI changes are usually reported as monthly changes (not annualized).  GDP growth is usually 
annualized.  So a 0.2% change in the month's CPI and a 2.4% growth in GDP are actually the same!  Any data 
report released by a government statistical agency should carefully explain if any changes are annualized or 
"at an annual rate." 

Seasonal adjustments are even more complicated, where growth rates might be reported as relative 
to previous averages.  We won't yet get into that. 

To annualize growth rates, we start from the original data (for now assume it's quarterly): suppose 
some economic series rose from 1000 in the first quarter to 1005 in the second quarter.  This is a 0.5% growth 
from quarter to quarter (=0.005).  To annualize that growth rate, we ask what would be the total growth, if 
the series continued to grow at that same rate for four quarters. 

This would imply that in the third quarter the level would be 1005*(1 + 0.005) =1005*(1.005) = 
1000*(1.005)*(1.005) = 1000*(1.005)2; in the fourth quarter the level would be 1000*(1.005) *(1.005)*(1.005) = 
1000*(1.005)3; and in the first quarter of next year the level would be 1000*(1.005) *(1.005) *(1.005) *(1.005) = 
1000*(1.005)4, which is a little more than 2%.  

This would mean that the annualized rate of growth (for an item reported quarterly) would be the final 

value minus the beginning value, divided by the beginning value, which is  
( ) ( )

4
41000 1.005 1000

1.005 1
1000

−
= − .   



Generalized, this means that quarterly growth is annualized by taking the single-quarter growth rate, 

g , and converting this to an annualized rate of ( )41 1g+ − . 

If this were monthly then the same sequence of logic would get us to insert a 12 instead of a 4 in the 

preceding formula.  If the item is reported over t  time periods, then the annualized rate is ( )1 1tg+ − .  (Daily 

rates could be calculated over 250 business days or 360 "banker's days" or 365/366 calendar days per year.) 

The year-on-year growth rate is different.  This looks back at the level from one year ago and finds the 
growth rate relative to that level. 

Each method has its weaknesses.  Annualizing needs the assumption that the growth could continue 
at that rate throughout the year – not always true (particularly in finance, where a stock could bounce by 1% 
in a day but it is unlikely to be up by over 250% in a year – there will be other large drops).  Year-on-year 
changes can give a false impression of growth or decline after the change has stopped. 

For example, if some item the first quarter of last year was 50, then it jumped to 60 in the second 
quarter, then stayed constant at 60 for the next two quarters, then the year-on-year change would be 
calculated as 20% growth even after the series had flattened. 

Sometimes several measures are reported, so that interested readers can get the whole story.  For 
examples, go to the US Economics & Statistics Administration, http://www.esa.doc.gov/, and read some of 
the "Indicators" that are released.   

For example, on July 14, 2011, "The U.S. Census Bureau announced today that advance estimates of 
U.S. retail and food services sales for June, adjusted for seasonal variation and holiday and trading-day 
differences, but not for price changes, were $387.8 billion, an increase of 0.1 percent (±0.5%) from the 
previous month, and 8.1 percent (±0.7%) above June 2010."  That tells you the level (not annualized), the 
monthly (not annualized) growth, and the year-0n-year growth.  The reader is to make her own inferences. 

GDP estimates are annualized, though, so we can read statements like this, from the BEA's July 29 
release, "Current-dollar GDP ... increased 3.7 percent, or $136.0 billion, in the second quarter to a level of 
$15,003.8 billion. " The figure, $15 trillion, is scaled to an annual GDP figure; we wouldn't multiply by 4.  On 
the other hand, the monthly retail sales figures above are not multiplied by 12. 

So if, for instance, we wanted to know the fraction of GDP that is retail sales, we could NOT divide 
387.8/15003.8 = 2.6%!  Instead either multiply the retail sales figure by 12 or divide the GDP figure by 12.  This 
would get 31%.  More pertinently, if we hear that government stimulus spending added $20 billion, we might 
want to try to figure out how much this helped the economy.  Again, dividing 20/15003.8 = 0.13% (13 bps) but 
this is wrong!  The $15tn is at an annual rate but the $20bn is not, so we've got to get the units consistent.  
Either multiply 50 by 4 or divide 15,003.8 by 4.  (This mistake has been made by even very smart people!) 

So don't make those foolish mistakes and know your data.  If you have a sample, know what the 
sample is taken from.  Often we use government data and just casually assume that, since the producers are 
professionals, that it's exactly what I want.  But "what I want" is not always "what is in the definition."  Much 
government data (we'll be using some of it for this class) is based on the Current Population Survey (CPS), 
which represents the civilian non-institutional population.  Since it's the main source of data on 
unemployment rates, it makes good sense to exclude people in the military (who have little choice about 
whether to go to work today) or in prison (again, little choice).  But you might forget this, and wonder why 
there are so few soldiers in the data that you're working with <forehead slap!>.   



So know your data.  Even if you're using internal company numbers, you've got to know what's being 
counted – when are sales booked?  Warehouse numbers aren't usually quite the same as accounting numbers. 

Show the Data 

A hot field currently is "Data Visualization."  This arises from two basic facts: 1. We're drowning in 
data; and 2. Humans have good eyes. 

We're drowning in data because increasing computing power makes so much more available to us.  
Companies can now give  top executives a "dashboard" where, just like a driver can tell how fast the car is 
travelling right now, the executive can see how much profit is being made right now.  Retailers have 
automated scanners at the cash register and at the receiving bay doors; each store can figure out what's 
selling.  

The data piles up while nobody's looking at it.  An online store might generate data on the thousands 
of clicks simultaneously occurring, but it's probably just spooling onto some server's disk drive.  It's just like 
spy agencies that harvest vast amounts of communications (voice, emails, videos, pictures) but then can't 
analyze them. 

The hoped-for solution is to use our fundamental capacities to see patterns; convert machine data to 
visuals.  Humans have good eyes; we evolved to live in the East African plains, watching all around ourselves 
to find prey or avoid danger.  Modern people read a lot but that takes just a small fraction of the eye's nerves; 
the rest are peripheral vision.  We want to make full use of our input devices. 

But putting data into visual form is really tough to do well!  The textbook has many examples to help 
you make better charts.  Read Chapter 3 carefully.  The homework will ask you to try your hand at it. 

Histograms 

You might have forgotten about histograms.  A histogram shows the number (or fraction) of 
outcomes which fall into a particular bin.  For example, here is a histogram of scores on the final exam for a 
class that I taught: 
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This histogram shows a great deal of information; more than just a single number could tell.  
(Although this histogram, with so many one- or two-step sizes, could be made much better.)   

Often a histogram is presented, as above, with blocks but it can just as easily be connected lines, like 
this: 

 

The information in the two charts is identical. 

Histograms are a good way of showing how the data vary around the middle.  This information about 
the spread of outcomes around the center is very important to most human decisions – we usually don't like 
risk. 

Note that the choice of horizontal scaling or the number of bins can be fraught. 

For example consider a histogram of a student's grades.  If we leave in the A- and B+ grades, we would 
show a histogram like this: 

 

whereas by collapsing together the grades into A, B, and C categories we would get something more 
intelligible, like this: 
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. 

This shows the central tendency much better – the student has gotten many B grades and slightly 
more A grades than C grades.  The previous histogram had too many categories so it was difficult to see a 
pattern. 

Another reason to show the data is to reveal structure that simple averages wouldn't show.  Consider 
the "datasaurus" where each scatter plot below has the same X and Y means, standard deviations, and 
correlation (by Alberto Cairo https://www.autodeskresearch.com/publications/samestats ): 

 

Basic Concepts: Find the Center of the Data 

You need to know how to calculate an average (mean), median, and mode.  After that, we will move 
on to how to calculate measures of the spread of data around the middle, its variation. 
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There are a few basic calculations that we start with.  You need to be able to calculate an average, 
sometimes called the mean. 

The average of some values, X, when there are N of them, is the sum of each of the values (index them 
by i) divided by N, so the average of X, sometimes denoted X , is 

 
1

1 N

i
i

X X
N =

= ∑ . 

The average value of a sample is NOT NECESSARILY REPRESENTATIVE of what actually happens.  
There are many jokes about the average statistician who has 2.3 kids.  If there are 100 employees at a 
company, one of whom gets a $100,000 bonus, then the average bonus was $1000 – but 99 out of 100 
employees didn't get anything. 

A common graphical interpretation of an average value is to interpret the values as lengths along 
which weights are hung on a see-saw.  The average value is where a fulcrum would just balance the weights.  
Suppose a student is calculating her GPA.  She has an A (worth 4.0), an A- (3.67), a B+ (3.33), a C (2.0) and one 
F (0) [she's having troubles!].  We could picture these as weights: 

 

The weights "balance" at the average point (where (0 + 2 + 3.33 + 3.67 + 4)/5 = 2.6): 
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So the "bonus" example would look like this, with one person getting $100,000 while the other 99 get 
nothing: 

 

Where there are actually 99 weights at "zero."  But even one person with such a long moment arm can 
still shift the center of gravity away. 

Bottom Line: The average is often a good way of understanding what happens to people within some 
group.  But it is not always a good way. 

Sometimes we calculate a weighted average using some set of weights, w, so 

 
1

n

weighted Average i i
i

X w X
=

=∑ , where 
1

1
n

i
i

w
=

=∑ . 

Your GPA, for example, weights the grades by the credits in the course.  Suppose you get a B grade (a 
3.0 grade) in a 4-credit course and an A- grade (a 3.67 grade) in a 3-credit course; you'd calculate GPA by 
multiplying the grade times the credit, summing this, then dividing by the total credits: 

3 4 3.67 3 4 33 3.67 3.287
4 3 4 3 4 3

GPA ⋅ + ⋅
= = + =

+ + +
.   

So in this example the weights are 1 2
4 3,

4 3 4 3
w w= =

+ +
. 

When an average is projected forward it is sometimes called the "Expected Value" where it is the 
average value of the predictions (where outcomes with a greater likelihood get greater weight).  This 
nomenclature causes even more problems since, again, the "Expected Value" is NOT NECESSARILY 
REPRESENTATIVE of what actually happens.   

To simplify some models of Climate Change, if there is a 10% chance of a 10° increase in temperature 
and a 90% chance of no change, then the calculated Expected Value is a 1° change – but, again, this value 
does not actually occur in any of the model forecasts. 

For those of you who have taken calculus, you might find these formulas reminiscent of integrals – good for you!  But we won't cover that now.  
But if you think of the integral as being just an extreme form o f a summation, then the formula has the same format. 
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The median is another measure of what happens to a 'typical' person in a group; like the mean it has 
its limitations.  The median is the value that occurs in the 50th percentile, to the person (or occurrence) exactly 
in the middle.  If there are an odd number of outcomes, otherwise it is between the two middle ones. 

In the bonus example above, where one person out of 100 gets a $100,000 bonus, the median bonus is 
$0.  The two statistics combined, that the average is $1000 but the median is zero, can provide a better 
understanding of what is happening.  (Of course, in this very simple case, it is easiest to just say that one 
person got a big bonus and everyone else got nothing.  But there may be other cases that aren't quite so 
extreme but still are skewed.) 

Mode 

The mode is the most common outcome; often there may be more than one.  If there were a slightly 
more complicated payroll case, where 49 of the employees got zero bonus, 47 got $1000, and four got 
$13,250 each, the mean is the same at $1,000, the median is now equal to the mean [review those 
calculations for yourself!], but the mode is zero.  So that gives us additional information beyond the mean or 
median. 

Spread around the center 

Data distributions differ not only in the location of their center but also in how much spread or 
variation there is around that center point.  For example a new drug might promise an average of 25% better 
results than its competitor, but does this mean that 25% of patients improved by 100%, or does this mean 
that everybody got 25% better?  It's not clear from just the central tendency.  But if you're the one who's sick, 
you want to know. 

This is a familiar concept in economics where we commonly assume that investors make a tradeoff 
between risk and return.  Two hedge funds might both have a record of 10% returns, but a record of 9.5%, 
10%, and 10.5% is very different from a record of 0%, 10%, and 20%.  (Actually a record of always winning, no 
matter what, distinguished Bernie Madoff's fund...) 

You might think to just take the average difference of how far observations are from the average, but 
this won't work.   

There's an old joke about the tenant who complains to the super that in winter his apartment is 50° 
and in summer is 90° -- and the super responds, "Why are you complaining?  The apartment is a comfortable 
70° on average!"  (So the tenant replies "I'm complaining because I have a squared error loss function!"  If you thought that was funny, 

you're a stats geek) 

The average deviation from the average is always zero.  Write out the formulas to see. 

The average of some N values, 1 2, , NX X X , is given by 
1

1 N

i
i

X X
N =

= ∑ .   

So what is the average deviation from the average, ( )
1

N

i
i

X X
=

−∑ ?   



We know that ( )
1 1 1

N N N

i i
i i i

X X X X
= = =

− = −∑ ∑ ∑  and, since X is the same for every observation, 
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= =∑ ∑ , if we substitute back from the definition of X .  So ( )
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− =∑ .  We can't re-use the 

average.  So we want to find some useful, sensible function [or functions], ( )f ⋅ , such that ( )
1

0
N

i
i

f X X
=

− ≠∑ . 

Standard Deviation 

The most commonly reported measure of spread around the center is the standard deviation.  This 
looks complicated since it squares the deviations and then takes the square root, but is actually quite 
generally useful. 

The formula for the standard deviation is a bit more complicated: 

 2

1

1 ( )
n

i
i

s X X
n =

= −∑ . 

Before you start to panic, let's go through it slowly.  First we want to see how far each observation is 
from the mean, 

 ( )iX X− . 

If we were to just sum up these terms, we'd get nothing – the positive errors and negative errors would 
cancel out.   

So we square the deviations and get  

 2

1
( )

n

i
i

X X
=

−∑ , 

and then just divide by n to find the average squared error, which is known as the variance, which is 

 2 2

1

1 ( )
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X i
i

X X
N

σ
=

= −∑ . 

The standard deviation is the square root of the variance; 2
X Xσ σ= 2

1

1 ( )
N

i
i

X X
N =

= −∑ . 

Of course you're asking why we bother to square all of the parts inside the summation, if we're only 
going to take the square root afterwards.  It's worthwhile to understand the rationale since similar questions 
will re-occur.  The point of the squared errors is that they don't cancel out.  The variance can be thought of as 
the average size of the squared distances from the mean.  Then the square root makes this into sensible units.  

The variance and standard deviation of the population divides by N; the variance and standard 
deviation of a sample divide by (N – 1).  This is referred to as a "degrees of freedom correction," referring to 
the fact that a sample, after calculating the mean, has lost one "degree of freedom," so the standard 



deviation has only (N – df) remaining.  You could worry about that difference or you could note that, for most 
datasets with huge N (like the ATUS with almost 100,000), the difference is too tiny to worry about. 

Our notation generally uses Greek letters to denote population values and English letters for sample 
values, so we have  
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 and 
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s X X
N =

= −
− ∑

. 

As you learn more statistics you will see that the standard deviation appears quite often.  Hopefully 
you will begin to get used to it. 

We could look at other functions of the distance of the data from the central measure, ( )f ⋅ , such that 

( )
1

0
N

i
i

f X X
=

− ≠∑  -- for example, the mean of the absolute value, 
1

1 N

i
i

X X
N =

−∑ .  By recalling the graphs of 

these two functions you can begin to appreciate how they differ:  

 

So that squaring the difference counts large deviations very much worse than small deviations, 
whereas an absolute deviation does not.  So if you're trying to hit a central target, it might well make sense 
that wider and wider misses should be penalized worse, while tiny misses should be hardly counted.   

There is a relationship between the distance measure selected and the central parameter.  For 
example, suppose I want to find some number, Z, that minimizes a measure of distance of this number, Z, 

from each observations.  So I want to minimize 
1

1 ( )
N

i
i

f X Z
N =

−∑ .  If we were to use the absolute value 

function then setting Z to the median would minimize the distance.  If we use instead the squared function 
then setting Z to the average would minimize the distance.  So there is an important connection between the 
average and the standard deviation, just as there is a connection between the median and the absolute 
deviation.  (Can you think of what distance measure is connected with the mode?)  
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If you know calculus, you will understand why, in the age before computer calculations, statisticians 
preferred the squared difference to the absolute value of the difference.  If we look for an estimator that will 
minimize that distance, then in general in order to minimize something we will take its derivative.  But the 
derivative of the absolute value is undefined at zero, while the squared distance has a well-defined derivative. 

Sometimes you will see other measures of variation; the textbook goes through these 

comprehensively.  Note that the Coefficient of Variation, s
X

, is the reciprocal of the signal-to-noise ratio.  

This is an important measure when there is no natural or physical measure, for example a Likert scale.  If you 
ask people to rate beers on a scale of 1-10 and find that consumers prefer Stone's Ruination Ale to Budweiser 
by 2 points, you have no idea whether 2 is a big or a small difference – unless you know how much variation 
there was in the data (i.e. the standard deviation).  On the other hand, if Ruination costs $2 more than Bud, 
you can interpret that even without a standard deviation. 

In finance, this signal/noise ratio is referred to as the Sharpe Ratio, fR r
σ
−

, where R  are the average 

returns on a portfolio and fr  is the risk-free rate; the Sharpe Ratio tells the returns relative to risk. 

Sometimes we will use "Standardized Data," usually denoted as iZ , where the mean is subtracted and 

then we divide by the standard deviation, so i
i

X XZ
s
−

= .  This is interpretable as measuring how many 

standard deviations from the mean is any particular observation.  This allows us to abstract from the 
particular units of the data (meters or feet; Celsius or Fahrenheit; whatever) and just think of them as generic 
numbers. 

Now Do It! 

We'll use data from the Census PUMS, on just people in New York City, to begin actually doing 
statistics, using the analysis program called R.  There are further lecture notes on each of those topics.  Read 
those carefully; you'll need them to do the homework assignment. 

Overview of PUMS 

We will use data from the Census Bureau's "Public Use Microdata Survey," or PUMS.  This is collected 
in the American Community Survey; just about every ten years since 1790 the Census has made a complete 
enumeration of the US population as required by the Constitution.  I got the data from IPUMS, which collects 
and makes available historical and contemporaneous Census data samples. 

We will work on this data using R.  I give an overview of the basics of how to use that program. 

The dataset (just people in the state of New York) has information on almost 200,000 people in almost 
100,000 households.  If there is a family living together in an apartment, say a parent and two kids, then each 
person has a row of data telling about him/her (age, gender, education, etc) but only the head of household 
would have information about the household (how much is spent on rent, utilities, etc.).  Depending on what 
analysis is to be made, the researcher might want to look at all the people or all of the households (or subsets 
of either).  (Note that the "head of household" is defined by the person interviewed so it could be the man or woman, if there are both.) 

There are variables coding people's race/ethnicity, if they were born in the US or a foreign country, 
how much schooling they have, if they are single or married, if they're a veteran, what borough they live in 



and how they commute to work.  There is some greater detail about ancestry (where people can write in 
detail about their background).  There is information about their incomes.  For the household there is 
information about the dwelling including how much they spend on mortgage/rent, how many rooms, how 
many units, and when it was built. 

Other Datasets 

The class will use a number of other data sets, which I will provide to you already formatted for R.  
These are usually assembled by government bureaucrats who love their acronyms so they include names like 
Fed SCF, NHIS, BRFSS, NHANES, WVS, PUMS. 

Overview of ATUS data 

We will also use data from the "American Time Use Survey," or ATUS.  This asks respondents to 
carefully list how they spent each hour of their time during the day; it's a tremendous resource.  The survey 
data is collected by the US Bureau of Labor Statistics (BLS), a US government agency.  You can find more 
information about it here, http://www.bls.gov/tus/. 

The dataset has information on thousands of people interviewed from 2003-2013.  This gives you a 
ton of information – we really need to work to get even the simplest information from it. 

The dataset is ready to use in R.  The ATUS has data telling how many minutes each person spent on 
various activities during the day.  These are created from detailed logbooks that each person kept, recording 
their activities throughout the day. 

They recorded how much time was spent with family members, with spouse, sleeping, watching TV, 
doing household chores, working, commuting, going to church/religious ceremonies, volunteering – there are 
hundreds of specific data items! 

The NY Times had this graphic showing the different uses of time during the day [here 
http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html is the full interactive chart where you can 
compare the time use patterns of men and women, employed and unemployed, and other groups – a great 
way to lose an evening! The article is here http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2 ] 

 

http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html
http://www.nytimes.com/2009/08/02/business/02metrics.html?_r=2


To use the data effectively, it is helpful to understand the ATUS classification system, where 
additional numbers at the right indicated additional specificity.  The first two digits give generic broad 
categories.  The general classification T05 refers to time spent doing things related to work.  T0501 is specific 
to actual work; T050101 is "Work, main job" then T050102 is "Work, other job," T050103 is "Security 
Procedures related to work," and T050189 is "Working, Not Elsewhere Classified," abbreviated as n.e.c. 
(usually if the final digit is a nine then that means that it is a miscellaneous or catch-all category).  Then there 
are activities that are strongly related to work, that a person might not do if they were not working at a 
particular job – like taking a client out to dinner or golfing.  These get their own classification codes, T050201, 
T050202, T050203, T050204, or T050289.  The list continues; there are "Income-generating hobbies, crafts, 
and food" and "Job interviewing" and "Job search activities."  These have other classifications beginning with 
T05 to indicate that they are work-related. 

So for instance, to create a variable, "Time Spent Working" that we might label "T_work," you would 
add up T050101, T050102, T050103, T050189, T050201, T050202, T050203, T050204, T050289, T050301, 
T050302, T050303, T050304, T050389,  T050403,  T050404,  T050405,  T050481,  T050499, and T059999.  You 
might want to add in "Travel related to working" down in T180501.  (No sane human would remember all 
these codings but you'd look at the "Labels" and create a new variable.)  It's tedious but not difficult in any 
way. 

Some variables are even more detailed – playing sports is broken down into aerobics, baseball, 
basketball, biking, billiards, boating, bowling, ... all the way to wrestling, yoga, and "Not Elsewhere Classified" 
for those with really obscure interests.  Then there are similar breakdowns for watching those sports.  Most 
people will have a zero value for most of these but they're important for a few people. 

You can imagine that different researchers, exploring different questions, could want different 
aggregates.  So the basic data has a very fine classification which you can add up however you want. 

Consumer Expenditure Data 

Tons of data about household consumption patterns: how much they spend on shelter, transportation, food, 
gadgets, etc. 

Taxi Data 
The data is the "Fare Data" from andresmh.com/nyctaxitrips, which posts data originally from Chris Whong.  
(Read the page about his FOIL request for the data, it's not often you find the phrase, "Overall, I have to say I was impressed with the TLC’s 
responsiveness, professionalism, and the fact that they allow email correspondence for this sort of thing in the first place.") 
 
The TLC tried to make the medallion and hack licenses anonymous but messed up, so Vijay Pandurangan was 
able to actually decode, making it possible to figure out exactly what taxi went where and when. 
 
I downloaded the first chunk (of 12) of the taxi data; it has 14,776,615 observations so working with it slows 
down my little laptop.  But it gets the job done.  If you have fun with it, grab the rest of the data and have 
more fun. 
 
Note that this is not the full population of cab rides in 2013 but just a convenience sample (the first data chunk 
that was available) so it is NOT a random sample and so canNOT be interpreted as implying anything about 
the population.  Nevertheless it's fun so for example you can figure out that tips are hugely under-reported, 
since only .01% of cash rides record any tip while 97% of credit-card rides report a tip.  There might be 
occasions where the ride is paid with a card but the tip is in cash. 

http://www.andresmh.com/nyctaxitrips/
http://chriswhong.com/open-data/foil_nyc_taxi/
https://medium.com/@vijayp/of-taxis-and-rainbows-f6bc289679a1


Fed SCF, Survey of Consumer Finances produced by the Federal Reserve 

This survey is only made once every three years.  The survey gives a tremendous amount of 
information about people's finances: how much they have in bank accounts (and how many bank accounts), 
credit cards, mortgages, student loans, auto and other loans, retirement savings, mutual funds, other assets – 
the whole panoply of financial information.  But there's a catch.  As you probably know from class as well as 
from personal experience, wealth is very unequally distributed.  Some people have few financial assets at all, 
not even a bank account.  Many people have only a few basic financial instruments: a credit card, some basic 
loans and a simple bank account.  Then a few wealthy people have tremendously complicated portfolios of 
assets. 

How does a statistical survey deal with this?  By unequal sampling then weighting – all of the samples I 
provide here do this to one degree or another, but it becomes very important in the Fed SCF.  The idea is 
simple: from the perspective of a survey about finance, all people with no financial assets look the same – 
they have "zero" for most answers in the survey.  So a single response is an accurate sample for lots and lots 
of people.  But people with lots of financial assets have varied portfolios, so a single response is an accurate 
sample for only a small number of people.  So if I were tasked with finding out about the financial system but 
could only survey 10 people, I might reasonably choose to sample 8 rich people with complicated portfolios 
and maybe 1 middle-class person and 1 poor person.  I would keep in mind that the population of people in 
the country are not 80% rich, of course!  In somewhat fancier statistics, I would weight each person, so the 
poor person would represent tens of millions of Americans, the middle-class person might represent many 
millions, and the rich people would each only represent a few million.  If I wanted to extrapolate from the 
sample to the population, I would have to use these weights. 

Many of the surveys we'll be using in class are weighted, and if you want to use them correctly you'll 
have to do the weighted versions.  I'm skipping that for this class only because I think the cost outweighs the 
benefits for students early in their curriculum. 

Actually using the Fed SCF survey can be difficult because the information is so richly detailed.  You 
might want, say, a family's total debt, but instead get debt on credit card #1, card #2, all types of different 
loans, etc. so you have to add them up yourself.  You have to do a bit of preliminary work. 

NHIS National Health Interview Survey 

This dataset has all sorts of medical and healthcare data – who has insurance, how often they're sick, 
doctor visits, pregnancy, weight/height.  In the US many people have health insurance provided through their 
work so the economics of health and economics of insurance become tangled together. 

BRFSS, Behavioral Risk Factor Surveillance System Survey 

This dataset has many observations on a wide variety of risky behaviors: smoking, drinking, poor 
eating, flu shots, whether household has a 3-day supply of food and water...  There is some economic data 
such as a person's income group. 

NHANES – National Health And Nutrition Examination Survey 

This has even more detail but on a smaller sample than the BRFSS.  On whether people have healthy 
lifestyles: eat veg and fruit, their BMI, whether they smoke (various things), use drugs, sex (number of 
partners) – lots of things that are interesting enough to compensate for the dull (!?!?) stats necessary to 
analyze it. 



There are other common data sources that are easily available online, which you can consider as you 
reflect upon your final project. 

IPUMS  

This is a tremendous data source, that has historical census data for past centuries, from  
http://www.ipums.org/. Some of the historical questions are weird (they asked if a person was "idiotic" or 
"dumb" – which sounds crazy but used to be scientific terms).  It includes full names and addresses from long-
ago census data. 

WVS World Values Survey 

This has a bit less economics but still lots of interesting survey data about attitudes of people of many 
issues; the respondents are global from scores of countries over several different years.  There is some 
information about personal income, education and occupation so you can see how those correlate with, say, 
attitudes toward democracy, religiosity, or other hot issues. 

Demographic and Health Surveys from USAID 

These give careful data about people in developing countries, to look at, say, how economic growth 
impacts nourishment. 
  



On Correlations: Finding Relationships between Two Variables 

In a case where we have two variables, X and Y, we want to know how or if they are related, so we use 
covariance and correlation. 

Suppose we have a simple case where X has a two-part distribution that depends on another variable, 
Y, where Y is what we call a "dummy" variable: it is either a one or a zero but cannot have any other value.  
(Dummy variables are often used to encode answers to simple "Yes/No" questions where a "Yes" is indicated 
with a value of one and a "No" corresponds with a zero.  Dummy variables are sometimes called "binary" or 
"logical" variables.)  X might have a different mean depending on the value of Y. 

There are millions of examples of different means between two groups.  GPA might be considered, 
with the mean depending on whether the student is a grad or undergrad.  Or income might be the variable 
studied, which changes depending on whether a person has a college degree or not.  You might object: but 
there are lots of other reasons why GPA or income could change, not just those two little reasons – of course!  
We're not ruling out any further complications; we're just working through one at a time. 

In the PUMS data, X might be "wage and salary income in past 12 months" and Y would be male or 
female.  Would you expect that the mean of X for men is greater or less than the mean of X for women? 

Run this on R ...  

In a case where X has two distinct distributions depending on whether the dummy variable, Y, is zero 
or one, we might find the sample average for each part, so calculate the average when Y is equal to one and 
the average when Y is zero, which we denote  ( ) ( ) 0 10 , 1 ,Y YX Y X Y or X X= == = .  These are called conditional 

means since they give the mean, conditional on some value. 

In this case the value of 1X Y =  is the same as the average of the two variables multiplied together, 

X Y⋅ . 
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This is because the value of anything times zero is itself zero, so the term { }
1

0
n

i
i

X Y
=

=∑  drops out.  

While it is easy to see how this additional information is valuable when Y is a dummy variable, it is a bit more 
difficult to see that it is valuable when Y is a continuous variable – why might we want to look at the 
multiplied value, X Y⋅ ?   

Use Your Eyes 

We are accustomed to looking at graphs that show values of two variables and trying to discern 
patterns.  Consider these two graphs of financial variables. 

This plots the returns of Hong Kong's Hang Seng index against the returns of Singapore's Straits 
Times index (over the period from Dec 29, 1989 to Sept 1, 2010) 



 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) during Jan 2, 1990 
– Sept 1, 2010. 



 

You don't have to be a highly-skilled econometrician to see the difference in the relationships.  It 
would seem reasonable to state that the Hong Kong and Singapore stock returns are closely linked; while US 
stock returns are not closely related to US interest rates.  (Remember, in most economic applications we 
want to use stock returns not the level of the price or index; typically returns are 𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡) − 𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡−1).) 

We want to ask, how could we measure these relationships?  Since these two graphs are rather 
extreme cases, how can we distinguish cases in the middle?  And then there is one farther, even more 
important question: how can we try to guard against seeing relationships where, in fact, none actually exist?  
The second question is the big one, which most of this course (and much of the discipline of statistics) tries to 
answer.  But start with the first question. 

How can we measure the relationship? 

Correlation measures how/if two variables move together.   

Recall from above that we looked at the average of X Y⋅  when Y was a dummy variable taking only 
the values of zero or one.  Return to the case where Y is not a dummy but is a continuous variable just like X.  
It is still useful to find the average of X Y⋅  even in the case where Y is from a continuous distribution and can 

take any value, 
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= ∑ . It is a bit more useful if we re-write X and Y as differences from their means, 

so finding: 
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This is the covariance, which is denoted cov(X,Y) or σXY. 

A positive covariance shows that 
when X is above its mean, Y tends to also 
be above its mean (and vice versa) so 
either a positive number times a positive 
number gives a positive or a negative 
times a negative gives a positive.  

A negative covariance shows that 
when X is above its mean, Y tends to be 
below its mean (and vice versa).  So when 
one is positive the other is negative, 
which gives a negative value when 
multiplied. 

 

A bit of math (extra): 
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(a strange case because it makes FOIL look like just FL!)

 

 

Covariance is sometimes scaled by the standard deviations of X and Y in order to eliminate problems 
of measurement units, so the correlation is: 
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 or Corr(X,Y), 

where the Greek letter "rho" denotes the correlation coefficient.  With some algebra you can show 
that ρ is always between negative one and positive one; 1 1XYρ− ≤ ≤ . 

Two variables will have a perfect correlation if they are identical; they would be perfectly inversely 
correlated if one is just the negative of the other (assets and liabilities, for example).  Variables with a 
correlation close to one (in absolute value) are very similar; variables with a low or zero correlation are nearly 
or completely unrelated. 



Sample covariances and sample correlations 

Just as with the average and standard deviation, we can estimate the covariance and correlation 
between any two variables.  And just as with the sample average, the sample covariance and sample 
correlation will have distributions around their true value. 

Go back to the case of the Hang Seng/Straits Times stock indexes.  We can't just say that when one is 
big, the other is too.  We want to be a bit more precise and say that when one is above its mean, the other 
tends to be above its mean, too.  We might additionally state that, when the standardized value of one is 
high, the other standardized value is also high.  (Recall that the standardized value of one variable, X, is 

,
i

X i
X

X XZ
s
−

= , and the standardized value of Y is ,
i

Y i
Y

Y YZ
s
−

= .) 

Multiplying the two values together, , ,X i Y iZ Z , gives a useful indicator since if both values are positive 

then the multiplication will be positive; if both are negative then the multiplication will again be positive.  So 
if the values of ZX and ZY are perfectly linked together then multiplying them together will get a positive 
number.  On the other hand, if ZX and ZY are oppositely related, so whenever one is positive the other is 
negative, then multiplying them together will get a negative number.  And if ZX and ZY are just random and 
not related to each other, then multiplying them will sometimes give a positive and sometimes a negative 
number. 

Sum up these multiplied values and get the (population) correlation, , ,
1

1 N

X i Y i
i

Z Z
N =
∑ . 

This can be written as ( )( ), ,
1 1 1
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population correlation between X and Y is denoted XYρ ; the sample correlation is XYr .  Again the difference is 
whether you divide by N or (N – 1).  Both correlations are always between -1 and +1; 1 1; 1 1rρ− ≤ ≤ − ≤ ≤ . 

We often think of drawing lines to summarize relationships; the correlation tells us something about 
how well a line would fit the data.  A correlation with an absolute value near 1 or -1 tells us that a line (with 
either positive or negative slope) would fit well; a correlation near zero tells us that there is "zero 
relationship."   

The fact that a negative value can infer a relationship might seem surprising but consider for example 
poker.  Suppose you have figured out that an opponent makes a particular gesture when her cards are no 
good – you can exploit that knowledge, even if it is a negative relationship.  In finance, if a fund manager finds 
two assets that have a strong negative correlation, that one has high returns when the other has low returns, 
then again this information can exploited by taking offsetting positions. 

You might commonly see a "covariance matrix" if you were working with many variables; the matrix 
shows the covariance (or correlation) between each pair.  So if you have 4 variables, named (unimaginatively) 
X1, X2, X3, and X4, then the covariance matrix would be: 

 X1 X2 X3 X4 

X1 σ11    



X2 σ21 σ22   

X3 σ31 σ32 σ33  

X4 σ41 σ42 σ34 σ44 

Where the matrix is "lower triangular" because cov(X,Y)=cov(Y,X) [return to the formulas if you're not 
convinced] so we know that the upper entries would be equal to their symmetric lower-triangular entry (so 
the upper triangle is left blank since the entries would be redundant).  And we can also show [again, a bit of 
math to try on your own] that cov(X,X) = var(X) so the entries on the main diagonal are the variances. 

If we have a lot of variables (15 or 20) then the covariance matrix can be an important way to easily 
show which ones are tightly related and which ones are not. 

As a practical matter, sometimes perfect (or very high) correlations can be understood simply by 
definition: a survey asking "Do you live in a city?" and "Do you live in the countryside?" will get a very high 
negative correlation between those two questions.  A firm's Assets and Liabilities ought to be highly 
correlated.  But other correlations can be caused by the nature of the sampling.  

Higher Moments 

The third moment is usually measured by skewness, which is a common characteristic of financial 
returns: there are lots of small positive values balanced by fewer but larger negative values.  Two portfolios 
could have the same average return and same standard deviation, but if one is not symmetric distribution (so 
has a non-zero skewness) then it would be important to understand this risk. 

The fourth moment is kurtosis, which measures how fat the tails are, or how fast the probabilities of 
extreme values die off.  Again a risk manager, for example, would be interested in understanding the 
differences between a distribution with low kurtosis (so lots of small changes) versus a distribution with high 
kurtosis (a few big changes). 

If these measures are not perfectly clear to you, don't get frustrated – it is difficult, but it is also very 
rewarding.  As the Financial Crisis has shown, many top risk managers at name-brand institutions did not 
understand the statistical distributions of the risks that they were taking on.  They plunged the global 
economy into recession and chaos because of it. 

These are called "moments" to reflect the origin of the average as being like weights on a lever or "moment arm".  The average is the first 
moment, the variance is the second, skewness is third, kurtosis is fourth, etc.  If you take a class using Calculus to go through Probability and Statistics, 
you will learn moment-generating functions. 

More examples of correlation: 

It is common in finance to want to know the correlation between returns on different assets. 

First remember the difference between the returns and the level of an asset or index! 

An investment in multiple assets, with the same return but that are uncorrelated, will have the same 
return but with less overall risk.  We can show this on Excel; first we'll do random numbers to show the basic 
idea and then use specific stocks. 



How can we create normally-distributed random numbers in Excel?  RAND() gives random numbers 
between zero and one; NORMSINV(RAND()) gives normally distributed random numbers.  (If you want 
variables with other distributions, use the inverse of those distribution functions.)  Suppose that two variables 
each have returns given as 2% + a normally-distributed random number; this is shown in Excel sheet, 
lecturenotes3.xls 

With finance data, we use the return not just the price.  This is because we assume that investors care 
about returns per dollar not the level of the stock price. 

Important Questions 

• When we calculate a correlation, what number is "big"?  Will see random errors – what 
amount of evidence can convince us that there is really a correlation? 

• When we calculate conditional means, and find differences between groups, what 
difference is "big"?  What amount of evidence would convince us of a difference? 

Example: 

Mazar, Amir, Ariely (2005) "Dishonesty of Honest People" [SSRN-id979648.pdf, available online] 

Students solve math problems and report how many, of 20, were solved (offered a small reward for 
success).  Here is a sample question: Which 2 numbers add to 10? You can see that finding the answer is 
tedious but doesn't require advanced mathematical knowledge. 

 

In one setup, the students first threw out the answer sheet and then just said how many they'd solved; 
in the other setup they handed over the sheet to be checked – so it was easier to cheat in the first case.  
Students who had to hand in the sheet reported solving an average of 3.1 out of 20 problems in the short time 
given; students who threw out the sheet reported 4.2.   

Are people more dishonest, when given a chance to be?  Really?  What information do we need, to be 
more confident about our knowledge?  Ariely did another study looking at whether wearing counterfeit 
sunglasses made people more likely to cheat. 



To answer these, we need to think about randomness – in other perceptual problems, what would be 
called noise or blur. 

Learning Outcomes (from CFA exam Study Session 2, Quantitative Methods) 

Students will be able to: 

 calculate and interpret relative frequencies, given a frequency distribution, and describe the properties of a 
dataset presented as a histogram; 

 define, calculate, and interpret measures of central tendency, including the population mean, sample mean, 
median, and mode; 

 define, calculate, and interpret measures of variation, including the population standard deviation and the 
sample standard deviation; 

 define and interpret the covariance and correlation; 

 define a random variable, an outcome, an event, mutually exclusive events, and exhaustive events; 

 distinguish between dependent and independent events; 
  



Probability 

Beyond presenting some basic measures such as averages and standard deviations, we want to try to 
understand how much these measures can tell us about the larger world.  How likely is it, that we're being 
fooled, into thinking that there's a relationship when actually none exists?  To think through these questions 
we must consider the logical implications of randomness and often use some basic statistical distributions 
(discrete or continuous).   

Think Like a Statistician 

The basic question that a Statistician must ask is "How likely is it, that I'm being fooled?"  Once we 
accept that the world is random (rather than a manifestation of some god's will), we must decide how to 
make our decisions, knowing that we cannot guarantee that we will always be right.  There is some risk that 
the world will seem to be one way, when actually it is not.  The stars are strewn randomly across the sky but 
some bright ones seem to line up into patterns.  So too any data might sometimes line up into patterns. 

Statisticians tend to stand on their heads and ask, suppose there were actually no relationship?  
(Sometimes they ask, "suppose the conventional wisdom were true?")  This statement, about "no 
relationship," is called the Null Hypothesis, sometimes abbreviated as H0.   The Null Hypothesis is tested 
against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We know that 
there is some probability that nature will fool me, that it will seem as though there is a relationship when 
actually there is none.  The statistical test will create a model of a world where there is actually no relationship 
and then ask how likely it is that we could see what we actually see, "How likely is it, that I'm being fooled?"  
What if there were actually no relationship, is there some chance that I could see what I actually see? 

Randomness in Games 

As an example, consider games or sports events.  As any sports fan knows, a team or individual can 
get lucky or unlucky.  The baseball World Series, for example, has seven games.  It is designed to ensure that, 
by the end, one team or the other wins.  But will the better team always win? 

First make a note about subjectivity: if I am a fan of the team that won, then I will be convinced that 
the better team won; if I'm a fan of the losing team then I'll be certain that the better team got unlucky.  But 
fans of each team might agree, if they discussed the question before the Series were played, that luck has a 
role. 

Will the better team win?  Clearly a seven-game Series means that one team or the other will win, 
even if they are exactly matched (if each had precisely a 50% chance of winning).  If two representatives 
tossed a coin in the air seven times, then one or the other would win at least four tosses – maybe even more.  
We can use a computer to simulate seven coin-tosses by having it pick a random number between zero and 
one and defining a "win" as when the random number is greater than 0.5. 

Or instead of having a computer do it, we could use a bit of statistical theory. 

Some math 

Suppose we start with just one coin-toss or game (baseball and basketball use 7 games to decide a 
champion; global football and American football use just one).  Choose to focus on one team so that we can 
talk about "win" and "loss".  If this team has a probability of winning that is equal to p, then it has a probability 



of losing equal to (1-p).  So even if p, the probability of winning, is equal to 0.6, there is still a 40% chance that 
it could lose a single game.  In fact unless the probability of winning is 100%, there is some chance, however 
remote, that the lesser team will win. 

What about if they played two games?  What are the outcomes?  The probability of a team winning 
both games is p*p = p2.  If the probability were 0.5 then the probability of winning twice in a row would be 
0.25. 

A table can show this: 

 Win Game 1 {p} Lose Game 1 {1-p} 

Win Game 2 {p} outcome: W,W L,W 

Lose Game 2 {1-p} W,L L,L 

This is a fundamental fact about how probabilities are represented mathematically: if the probabilities 
are not related (i.e. if the tossed coin has no memory) then the probability of both events happening is found 
my multiplying the probabilities of each individual outcome.  (What if they're not unrelated, you may ask?  
What if the first team that wins gets a psychological boost in the next so they're more likely to win the second 
game?  Then the math gets more complicated – we'll come back to that question!) 

The math notation for two events, call them A and B, both happening is: 

{ } { }Pr PrA and B A B= ∩  

The fundamental fact of independence is then represented as: 

{ } { } { }Pr Pr PrA B A B if A and B are independent∩ =  

where we use the term "independent" for when there is no relationship between them. 

The probability that a team could lose both games is (1-p)*(1-p) = (1-p)2.  The probability that the 
teams could split the series (each wins just one) is p*(1-p) + (1-p)*p = 2p(1-p).  There are two ways that each 
team could win just one game: either the series splits (Win,Loss) or (Loss,Win). 

For three games the outcomes become more complicated: now there are 8 combinations of win and 
loss:  

(W,W,W) (W,W,L) (W,L,W) (L,W,W) (W,L,L) (L,W,L) (L,L,W) (L,L,L) 
p*p*p p*p*(1-p) p*(1-p)p (1-p)p*p p(1-p)(1-p) (1-p)p(1-p) (1-p)(1-p)p (1-p)(1-p)(1-p) 

and the probabilities are in the row below.   

The team will win the series in any of the left-most 4 outcomes so its overall probability of winning the 
series is  

( )3 23 1p p p+ −  

while its probability of losing the series is 



( ) ( )2 33 1 1p p p− + − . 

Clearly if p is 0.5 so that p=(1-p) then the chances of either team winning the three-game series are 
equal.  If the probabilities are not equal then the chances are different, but as long as there is a probability not 
equal to one or zero (i.e. no certainty) then there is a chance that the worse team could win. 

If you keep on working out the probabilities for longer and longer series you might notice that the 
coefficients and functional forms are right out of Pascal's Triangle.  This is your first notice of just how 
"normal" the Normal Distribution is, in the sense that it jumps into all sorts of places where you might not 
expect it.  The terms of Pascal's Triangle begin (as N becomes large) to form a normal distribution!  We'll 
come back to this again... 

Independent Events 

A is independent of B if and only if { } { }P A B P A=  

If we have multiple random variables then we can consider their Joint Distribution: the probability 
associated with each outcome in both sample spaces.  So a coin flip has a simple discrete distribution: a 50% 
chance of heads and a 50% chance of tails.  Flipping 2 coins gives a joint distribution: a 25% chance of both 
coming up heads, a 25% chance of both coming up tails, and a 50% chance of getting one head and one tail. 

The probability of multiple independent events is found by multiplying the probabilities of each event 

together.  So the chance of rolling two 6 on two dice is 1 1 1
6 6 36
⋅ = .  The probability of getting to the computer 

lab on the 6th floor of NAC from the first floor, without having to walk up a broken escalator, can be found this 
way too.  Suppose the probability of an escalator not working is p ; then the probability of it working is 

( )1 p−  and the probability of five escalators each working is ( )51 p− .  So even if the probability of a 

breakdown is small (5%), still the probability of having every escalator work is just 

( ) ( ) ( )
5

5 5 5 951 5% 95% 0.95 0.7738 77.38%
100
 − = = = = = 
 

 so this implies that you'd expect to walk more than 

once a week. 

A simple representation of the joint distribution of two coin flips is a table: 

 coin 1 Heads coin 1 Tails 

coin 2 Heads H,H at 25% H,T at 25% 

coin 2 Tails T,H at 25% T,T at 25% 

Where, since the outcomes are independent, we can just multiply the probabilities. 

The Joint Distribution tells the probabilities of all of the different outcomes.  A Marginal Distribution 
answers a slightly different question: given some value of one of the variables, what are the probabilities of 
the other variables? 

When the variables are independent then the marginal distribution does not change from the joint 
distribution.  Consider a simple example of X and Y discrete variables.  X takes on values of 1 or 2 with 



probabilities of 0.6 and 0.4 respectively.  Y takes on values of 1, 2, or 3 with probabilities of 0.5, 0.3, and 0.2 
respectively.  So we can give a table like this: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 
probability 0.3 

(2,1) at 
probability 0.2 

 

Y=2 (30%) (1,2) at 
probability 0.18 

(2,2) at 
probability 0.12 

 

Y=3 (20%) (1,3) at 
probability 0.12 

(2,3) at 
probability 0.08 

 

    

On the assumption that X and Y are independent.  The probabilities in each box are found by 
multiplying the probability of each independent event. 

If instead we had the two variables, A and B, not being independent then we might have a table more 
like this: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) at 
probability 0.13 

 

B=2  (1,2) at 
probability 0.23 

(2,2) at 
probability 0.12 

 

B=3  (1,3) at 
probability 0.17 

(2,3) at 
probability 0.1 

 

    

We will examine the differences. 

If we add up the probabilities along either rows or columns then we get the marginal probabilities 
(which we write in the margins, appropriately enough).  Then we'd get: 

 X=1 (60%) X=2 (40%)  

Y=1 (50%) (1,1) at 
probability 0.3 

(2,1) at 
probability 0.2 

0.5 

Y=2 (30%) (1,2) at 
probability 0.18 

(2,2) at 
probability 0.12 

0.3 

Y=3 (20%) (1,3) at 
probability 0.12 

(2,3) at 
probability 0.08 

0.2 

 0.6 0.4  



Which just re-states our assumption that the variables are independent – and shows that, where there 
is independence, the probability of either variable alone does not depend on the value that the other variable 
takes on.  In other words, knowing X does not give me any information about the value that Y will take on, 
and vice versa. 

If instead we do this for the A,B case we get: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) at 
probability 0.13 

0.38 

B=2  (1,2) at 
probability 0.23 

(2,2) at 
probability 0.12 

0.35 

B=3  (1,3) at 
probability 0.17 

(2,3) at 
probability 0.1 

0.27 

 0.65 0.35  

Where we double check that we've done it right by seeing that the sum of either of the marginals is 
equal to one (65% + 35% = 100% and 38% + 35% + 27% = 100%). 

So the marginal distributions sum the various ways that an outcome can happen.  For example, we can 
get A=1 in any of 3 ways: either (1,1), (1,2) or (1,3).  So we add the probabilities of each of these outcomes to 
find the total chance of getting A=1. 

But if we want to understand how A and B are related, it might be more useful to consider this as a 
prediction problem: would knowing the value that A takes on help me guess the value of B?  Would knowing 
the value that B takes on help me guess the value of A? 

These are abstract questions but they have vitally important real-life analogs.  In airport security, is 
the probability that someone is a terrorist independent of whether they are Muslim?  Is the probability that 
someone is pulled out of line for a thorough search independent of whether they are Muslim?  (The TSA might 
have different beliefs than you or me!)  In medicine, is the probability that someone gets cancer independent of 
whether they eat lots of vegetables?  In economics, is the probability that someone defaults on their 
mortgage independent of the mortgage originator (Fannie, Freddie, mortgage broker, bank)?  Is the 
probability of the country pulling out of recession independent of whether the Fed raises rates?  In poker, if 
my opponent just raised the bid, what is the probability that her cards are better than mine? 

For these questions we want to find the conditional distribution: what is the probability of some 
outcome, given a particular value for some other random variable? 

Just from the phrasing of the question, you should be able to see that if the two variables are 
independent then the conditional distribution should not change from the marginal distribution – as is the 
case of X and Y.  Flipping a coin does not help me guess the outcome of a roll of the dice.  (Cheering in front of 
a sports game on TV does not affect the outcome, for another example – although plenty of people act as 
though they don't believe that!) 

How do we find the conditional distribution?  Take the value of the joint distribution and divide it by 
the marginal distribution of the relevant variable. 



For example, suppose we want to find the probability of B outcomes, conditional on A=1.  Since we 
know that A=1, there is no longer a 65% probability of A – assume that it happened.  So we divide each joint 
probability by 0.65 so that the sum will be equal to 1.  So the probabilities are now: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25/.65 

(2,1) at 
probability 0.13 

0.38 

B=2  (1,2) at 
probability 0.23/.65 

(2,2) at 
probability 0.12 

0.35 

B=3  (1,3) at 
probability 0.17/.65 

(2,3) at 
probability 0.1 

0.27 

 0.65/.65 0.35  

so now we get the conditional distribution: 

 A=1  A=2   

B=1  (1,1) @ 0.3846 (2,1) at 
probability 0.13 

0.38 

B=2  (1,2) @ 0.3538 (2,2) at 
probability 0.12 

0.35 

B=3  (1,3) @ 0.2615 (2,3) at 
probability 0.1 

0.27 

  0.35  

We could do the same to find the conditional distribution of B, given that A=2: 

 A=1  A=2   

B=1  (1,1) at 
probability 0.25 

(2,1) @ 0.13/.35 
=.3714 

0.38 

B=2  (1,2) at 
probability 0.23 

(2,2) @ 0.12/.35 
= .3429 

0.35 

B=3  (1,3) at 
probability 0.17 

(2,3) @ 0.1/.35 = 
.2857 

0.27 

 0.65   

These conditional probabilities are denoted as { }Pr 2B A =  for example.  We could find the expected 

value of B given that A equals 2, 2E B A =  , just by multiplying the value of B by its probability of 

occurrence, so ( ) ( ) ( )2 1 .3714 2 .3429 3 .2857E B A = = ⋅ + ⋅ + ⋅  . 



We could find the conditional probabilities of A given B=1 or given B=2 or given B=3.  In those cases we 
would sum across the rows rather than down the columns. 

More pertinently, we can get crosstabs on two variables, for example the wage by education (we'll use 
the PUMS data on people in NY).  First I break wages into groups: less than $10,000 per year; then up to 
$50,000; up to $100,000; and greater than that.  The R-output is:  
 No HS HS SmColl Bach Adv 
less than 10,000 15790 32307 16584 10490 7603 
10,001 - 50,000 3484 16629 11205 8568 4118 
50,001 - 100,000 494 5191 5089 7688 6571 
100,001+ 88 976 1134 4056 5093 

But these are raw numbers of people not fractions – so divide by the total number of observations 
(easy in Excel or can be done in R, depending on your preference); I also show the marginals: 

 No HS HS SmColl Bach Adv  Marginals 
less than 10,000 0.097 0.198 0.102 0.064 0.047  0.507 
10,001 - 50,000 0.021 0.102 0.069 0.053 0.025  0.270 
50,001 - 100,000 0.003 0.032 0.031 0.047 0.040  0.153 
100,001+ 0.001 0.006 0.007 0.025 0.031  0.070 

        
Marginals 0.122 0.338 0.208 0.189 0.143   

Some R code to do those tables: 
table(cut(income_wagesal,breaks=4),educ_indx) 
# but that output might not be quite what we want so instead tell it what 
breaks to use 
table(cut(income_wagesal,breaks=c(-
1000,10000,50000,100000,1000000)),educ_indx) 
# note that I first used summary(income_wagesal) to figure max min and guess 
at suitable break points 
barplot(table(cut(income_wagesal,breaks=c(-
1000,10000,50000,100000,1000000)),educ_indx)) 
#alternately 
plot(cut(income_wagesal,breaks=c(-
1000,10000,50000,100000,1000000)),educ_indx) 

These numbers are rough to interpret; the conditionals might be easier.  So can ask, what is the 
likelihood of making particular levels of wage income, conditional on level of education?  This divides each 
proportion by its column sum, its marginal. Note each column sums to 1. 

Conditional on Education No HS HS SmColl Bach Adv 
less than 10,000 0.795 0.586 0.488 0.341 0.325 
10,001 - 50,000 0.175 0.302 0.329 0.278 0.176 
50,001 - 100,000 0.025 0.094 0.150 0.250 0.281 
100,001+ 0.004 0.018 0.033 0.132 0.218 

This shows that, of the people without a high school diploma, 79.5% have wage of $10,000 or less, 
while just 32.5% of people with an Advanced Degree make that little money.  On the opposite end, just about 
4/10 of 1% of people without a high school diploma make over $100k, while nearly 22% of people with an 
Advanced Degree make more than $100k. 

The other conditional is asking, of people with wages above $100,000, what fraction have each 
degree?  That table is found by dividing each row in the original table by its sum: 



Conditional on Wage No HS HS SmColl Bach Adv 
less than 10,000 0.191 0.390 0.200 0.127 0.092 
10,001 - 50,000 0.079 0.378 0.255 0.195 0.094 
50,001 - 100,000 0.020 0.207 0.203 0.307 0.262 
100,001+ 0.008 0.086 0.100 0.357 0.449 

So this shows that, of people making more than $100,000 in wages, 45% of them have an Advanced 
Degree, another 36% have a Bachelor's Degree, while just 27% have fewer educational qualifications. 

Both of these conditioning sets help understand how education and wages are interrelated – there is 
not necessarily one better than the other. (Also, not all of these are working people – there are children, 
retirees, and others not in the workforce.  You can re-do the numbers for subsets, maybe people 25-55 would 
be a better choice?  Smells like … HOMEWORK!) 

Conditional probabilities can also be calculated with what is called Bayes' Theorem:  

{ } { } { }
{ }

P A B P B
P B A

P A
⋅

= . 

This can be understood by recalling the definition of conditional probability, { } { }
{ }

P A B
P A B

P B
∩

= , so 

{ } { }
{ }

P A B
P B A

P A
∩

= , that the conditional probability equals the joint probability divided by the marginal 

probability. 

The power of Bayes' Theorem can be understood by thinking about medical testing.  Suppose a 
genetic test screens for some disease with 99% accuracy.  Your test comes back positive – how worried 
should you be?   The surprising answer is not 99% worried; in fact often you might be more than likely to be 
healthy!  Suppose that the disease is rare so only 1 person in 1000 has it (so 0.1%).  So out of 1000 people, one 
person has the disease and the test is 99% likely to identify that person.  Out of the remaining 999 people, 1% 
will be misidentified as having the disease, so this is 9.99 – call it 10 people.  So eleven people will test positive 
but only one will actually have the disease so the probability of having the disease given that the test comes 

up positive, { }P sick test + , is 
{ } { }

{ }
P test sick P sick

P test
+

+
= 0.99 0.001 .099

0.01
⋅

= . 

The test is not at all useless – it has brought down an individual's likelihood of being sick by orders of 
magnitude, from one-tenth of one percent to ten percent.  But it's still not nearly as accurate as the "99%" 
label might imply. 

Many healthcare providers don't quite get this and explain it merely as "don't be too worried until we 
do further tests."  But this is one reason why broad-based tests can be very expensive and not very helpful.  
These tests are much more useful if we first narrow down the population of people who might have the 
disease.  For example home pregnancy tests might be 99% accurate but if you randomly selected 1000 people 
to take the test, you'd find many false positives.  Some of those might be guys (!) or women who, for a variety 
of reasons, are not likely to be pregnant.  The test is only useful as one element of a screen that gets 
progressively finer and finer.  (Occasionally politicians think it might be a good idea to have, for example, 
every welfare recipient tested for drugs, without discussion of how many false positives and false negatives 
would be produced.) 



Terms and Definitions 

Some basics: a sample space is the entire list of possible outcomes (can be whole long list or even 
mathematical sets such as real numbers); events are subsets of the sample space.  Simple event is a single 
outcome (one dice comes up 6); a compound event is several outcomes (both dice come up 6).  Notate an 
event as A.  The complement of the event is the set of all events that are not in A; this is A'. 

The events must be mutually exclusive and exhaustive, so a good deal of the hard work in 
probability is just figuring out how to list all of the events. 

Mutually exclusive means that the events must be clearly defined so that the data observed can be 
classified into just one event.  Exhaustive means that every possible data observed must fit into some event.  
The "mutually exclusive" part means that probabilities can be added up, so that if the probability of rolling a 
"1" on a dice is 1/6 and the probability of rolling a 6 is 1/6, then the probability of rolling either a 1 or 6 is 2/6 = 
1/3.  The "exhaustive" part of defining the events means that the sum of all the events must equal one. 

For example, suppose we roll two dice.  We might want to think of "die #1 comes up as 6" as one event 
[in English, the singular of "dice" is "die" – how morbid gambling can be!].  But the other die can have 6 
different values without changing the value of the first die.  So a better list of events would be the integers 
from 2 to 12, the sum of the dice values – with the note that there are many ways of achieving some of the 
events (a 7 is a 6 &1 or a 5&2, or 4&3, or 3&4, or 2&5, or 1&6) while other events have only one path (each die 
comes up 6 to make 12). 

A sample space is the set of all possible events.  The sum of the probability of all of the events in the 
sample space is equal to one.  There is a 100% chance that something happens (provided we've defined the 
sample space correctly).  So if a lottery brags that there is a 2% chance that "you might be a winner!" this is 
equivalent to stating that there is a 98% chance that you'll lose. 

Events have probability; this must lie between zero and one (inclusive); so 0 1P≤ ≤ .  The probability 
of all of the events in the sample space must sum to one.  This means that the probability of an event and its 
complement must sum to one: { } { } 1P A P A′+ = . 

Probabilities come from empirical results (relative frequency approach) or the classical (a priori or 
postulated) assignment or from subjective beliefs that people have.   

In empirical approach, the Law of Large Numbers is important: as the number of identical trials 
increases, the estimated frequency approaches its theoretical value.  You can try flipping coins and seeing 
how many come up heads (flip a bunch at a time to speed up the process); it should be 50%. 

We are often interested in finding the probability of two events both happening; this is the 
"intersection" of two events; the logical "and" relationship; two things both occurring.  In the PUMS data we 
might want to find how many females have a college degree; in poker we might care about the chance of an 
opponent having an ace as one of her hole cards and the dealer turning up a king.  We notate the intersection 
of A and B as A B∩  and want to find { }P A B∩ .  In SPSS this is notated with "&". 

The "union" of two events is the logical "or" so it is either of two events occurring; this is A B∪  so we 
might consider { }P A B∪  or, in SPSS, "|".  In the PUMS data we might want to combine people who report 

themselves as having race "black" with those who report "black – white".   In cards,  it is the probability that 
any of my 3 opponents has a better hand. 



Married people can buy life insurance policies that pay out either when the first person dies or after 
both die – logical and vs or. 

Venn Diagrams (Ballantine) 

 

 

General Law of Addition 

{ } { } { } { }P A B P A P B P A B∪ = + − ∩  

and so { } { } { } { }P A B P A P B P A B∩ = + − ∪  

Mutually Exclusive (Special Law of Addition),  

If A B φ∩ =  then { } 0P A B∩ =  and { } { } { }P A B P A P B∪ = +  

Conditional Probability 

{ } { }
{ }

P A B
P A B

P B
∩

=  if { } 0P B ≠ .  See Venn Diagram. 

Counting Rules 

If A can occur as N1 events and B can be N2 events then the sample space is 1 2N N⋅  (visualize a 
contingency table with N1 rows and N2 columns). 

Factorials: If there are N items then they can be arranged in ( )( )( ) ( ) ( )
1

0

! 1 2 1
N

i

N n n n N i
−

=

= − − = −∏  

ways. 

Permutations: n events that can occur in r items (where order is important) have a total of 

( )
!

!
nnPr

n r
=

−
 possible outcomes. 

Combinations: n events that can occur in r items (where order is not important) have 
( )

!
! !

nnCr
r n r

=
−

 

possible outcomes – just the permutation divided by r! to take care of the multiple ways of ordering. 

So to apply these, consider computer passwords (see NYTimes article below).   

The article reports: 

Mr. Herley, working with Dinei Florêncio, also at Microsoft Research, looked at the 
password policies of 75 Web sites. ... They reported that the sites that allowed relatively weak 
passwords were busy commercial destinations, including PayPal, Amazon.com  and Fidelity 
Investments. The sites that insisted on very complex passwords were mostly government and 



university sites. What accounts for the difference? They suggest that “when the voices that 
advocate for usability are absent or weak, security measures become needlessly restrictive.”   

Consider the simple mathematics of why a government or university might want complex 
passwords.  How many permutations are possible if passwords are 6 numerical digits?  How many if 
passwords are 6 alphabetic or numeric characters?  If the characters are alphabetic, numeric, and 
fifteen punctuation characters (, . _ - ? ! @ # $ % ^ & * ' ")?  What if passwords are 8 characters?  If 
each login attempt takes 1/100 of a second, how many seconds of "brute-force attack" does it take to 
access the account on average?  If there is a penalty of 10 minutes after 3 unsuccessful login attempts, 
how long would it take to break in?  (Of course, the article notes, if password requirements are so 
arcane that employees put their passwords on a Post-It attached to the monitor, then the calculations 
above are irrelevant.) 

Discrete and Continuous Random Variables 

For any discrete random variable, the mean or expected value is: 

( ) ( )
1

N

i i
i

E X x P xµ
=

= =∑   

and the variance is 

 ( ) ( )22

1

N

i i
i

x P xσ µ
=

= −∑  so the standard deviation is the square root. 

These can be described by PDF or CDF – probability density function or cumulative distribution 
function.  The PDF shows the probability of events; the CDF shows the cumulative probability of an event 
that is smaller than or equal to that event.  The PDF is the derivative of the CDF. 

Linear Transformations: 

• If Y aX b= +  then Y will have mean Y Xa bµ µ= +  and standard deviation Y Xaσ σ= . 

• If Z X Y= +  then Z X Yµ µ µ= + ; 2 2 2Z X Y XYσ σ σ σ= + +  (and if X and Y are 

independent then the covariance term drops out) 

WARNING: These statements DO NOT work for non-linear calculations!  The propositions 
above do NOT tell about when X and Y are multiplied and divided: the distributions of X Y⋅  or X

Y  

are not easily found.  Nor is ln X , nor Xe .  We might wish for a magic wand to make these work out 
simply but they don't in general. 

Common Distributions: 

Uniform 

• depend on only upper and lower bound, so all events are in [ ],a b  

• mean is 2
a b+

; standard deviation is 

[ ]21 1
12

b a− + −

 



• Many null hypotheses are naturally formulated as stating that some distribution is 
uniform: e.g. stock picks, names and grades, birth month and sports success, etc. 

 
from: Barnett, Adrian G. (2010) The relative age effect in Australian Football League players. Working Paper. 

Although note that distribution of births is not quite uniform; certainly among animal species humans 
are unusual in that births are not overwhelmingly seasonal. 

Benford's Law: not really a law but an empirical result about measurements, that looking at the first 
digit, the value 1 is much more common than 9 – the first digit is not uniformly distributed.  Originally stated 
for tables of logarithms.  Second digit is closer to uniform; third digit closer still, etc.  See online R program.  
This is a warning that sometimes our intuition about how we might think numbers are distributed is actually 
wrong. 

Bernoulli 

• depend only on p, the probability of the event occurring 

• calc mean and standard deviation from formulas, 
( ) ( )

1

N

i i
i

E X x P xµ
=

= =∑
  and 

( ) ( )22

1

N

i i
i

x P xσ µ
=

= −∑
.  Where there are only 2 values, 0 and 1, this is easy to calculate.  E(X) here is 

1*P(x=1)+0*P(x=0) = 1*p + 0*(1-p) = p.  Variance is (1-p)2 * p + (0 – p)2 * (1-p) = {some algebra to write 
out} = p – p2. 

• mean is p; standard deviation is ( )1p p−  

o Where is the maximum standard deviation?  Intuition: what probability will give 
the most variation in yes/no answers?  Or use calculus; note that has same maximum as p(1 – p) 
so take derivative of that, set to zero.  Then hit your forehead with the palm of your hand, 
realizing that calculus gave you the same answer as simple intution. 
• Used for coin flips, dice rolls, events with "yes/no" answers: Was person re-employed 

after layoff? Did patient improve after taking the drug?  Did company pay out to investors from IPO? 

Binomial 

• have n Bernoulli trials, each independent; record how many were 1 not zero 

• npµ = ; 
( )1np pσ = −

  



o These formulas are easy to derive from rules of linear combinations.  If Bi are 
independent random variables with Bernoulli distributions, then what is the mean of B1 + B2?  
What is its std dev? 

o What if this is expressed as a fraction of trials?  Derive.  
• what fraction of coin flips came up heads?  What fraction of people were re-employed 

after layoff?  What fraction of patients improved?  What fraction of companies offered IPOs? 
• questions about opinion polls – the famous "plus or minus 2 percentage points" – get 

margin of error depending on sample size (n) 

Some students are a bit puzzled by two different sets of formulas for the binomial distribution 

– the standard deviation is listed as either ( )1np p−  or 
( )1p p

n
−

.  Which is it?! 

It depends on the units.  If we measure the number of successes in n trials, then we multiply by 
n.  If we measure the fraction of successes in n trials, then we don't multiply but divide. 

Consider a simple example: the probability of a hit is 50% so ( ) 1 1 1 11
2 2 4 2

p p− = ⋅ = = .   If 

we have 10 trials and ask, how many are likely to hit, then this should be a different number than if we 
had 500 trials.  The standard error of the raw number of how many, of 10, hits we would expect to see, 

is 110
2
⋅  which is 1.58, so with a 95% probability we would expect to see 5 hits, plus or minus 

1.96*1.58 = 3.1 so a range between 2 and 8.  If we had 500 trials then the raw number we'd expect to 

see is 250 with a standard error or 1500
2
⋅ = 11.18 so the 95% confidence interval is 250 plus or minus 

22 so the range between 228 and 272.  This is a bigger range (in absolute value) but a smaller part of 
the fraction of hits. 

With 10 draws, we just figured out that the range of hits is (in fractions) from 0.2 to 0.8.  With 
500 draws, the range is from 0.456 to 0.544 – much narrower.  We can get these latter answers if we 
take the earlier result of standard deviations and divide by n.  The difference in the formula is just this 

result, since 
1n

n n
= .  You could think of this as being analogous to the other "standard error of the 

average" formulas we learned, where you take the standard deviation of the original sample and 
divide by the square root of n. 

Alternately instead of memorizing formulas for different distributions, you can derive this one 
easily from our rules of linear combinations.  (Try it!) 

Poisson 

• model arrivals per time, assuming independent 
• depends only on λ  which is also mean 

• PDF is 
!

xe
x

λλ −

 

• model how long each line at grocery store is, how cars enter traffic, how many 
insurance claims 

  



From Discrete to Continuous: an example of a very simple model (too simple) 

Use computer to create models of stock price movements.  What model?  How complicated is 
"enough"? 

Start really simple: Suppose the price were 100 today, and then each day thereafter it rises/falls by 10 
basis points.  What is the distribution of possible stock prices, after a year (250 trading days)? 

Use Excel (not even R for now!) 

First, set the initial price at 100; enter 100 into cell B2 (leaves room for labels).  Put the 
trading day number into column A, from 1 to 250 (shortcut).  In B1 put the label, "S". 

Then label column C as "up" and in C2 type the following formula, 

=IF(RAND()>0.5,1,0) 

The "RAND()" part just picks a random number between 0 and 1 (uniformly 
distributed).  If this is bigger than one-half then we call it "up"; if it's smaller then we call it 
"down".  So that is the "=IF(statement, value-if-true, value-if-false)" portion.  So it will return a 
1 if the random number is bigger than one-half and zero if not. 

Then label column D as "down" and in D2 just type  

=1-C2 

Which simply makes it zero if "up" is 1 and 1 if "up" is 0. 

Then, in B3, put in the following formula, 

=B2*(1+0.001*(C2-D2)) 

Copy and paste these into the remaining cells down to 250. 

Of course this isn't very realistic but it's a start. 

Then plot the result (highlight columns A&B, then "Insert\Chart\XY (Scatter)"); here's 
one of mine: 
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Here are 10 series (copied and pasted the whole S, "up," and "down" 10 times), see 
Excel sheet " simple_stock_example_for_lecture2.xlsx". 

 

 

We're not done yet; we can make it better.  But the real point for now is to see the basic principle of 
the thing: we can simulate stock price paths as random trips. 

The changes each day are still too regular – each day is 10 bps up or down; never constant, never 
bigger or smaller.  That's not a great model for the middle parts.  But the regularity within each individual 
series does not necessarily mean that the final prices (at step 250) are all that unrealistic. 

I ran 2000 simulations; this is a histogram of the final price of the stock: 
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(If you're confident with you R knowledge, try writing that code!) 

It shouldn't be a surprise that it looks rather normal (it is the result of a series of Bernoulli trials – that's 
what the Law of Large Numbers says should happen!). 

With computing power being so cheap (those 2000 simulations of 250 steps took a few seconds) these 
sorts of models are very popular (in their more sophisticated versions). 

It might seem more "realistic" if we thought of each of the 250 tics as being a portion of a day.  
("Realistic" is a relative term; there's a joke that economists, like artists, tend to fall in love with their models.) 

There are times (in finance for some option pricing models) when even this very simple model can be 
useful, because the fixed-size jump allows us to keep track of all of the possible evolutions of the price. 

But clearly it's important to understand Bernoulli trials summing to Binomial distributions converging 
to normal distributions. (See "Side Note" below for more detail.) 

Continuous Random Variables 

The PDF and CDF 

Where discrete random variables would sum up probabilities for the individual outcomes, continuous 
random variables necessitate some more complicated math.  When X is a continuous random variable, the 
probability of it being equal to any particular value is zero. If X is continuous, there is a zero chance that it will 
be, say, 5 – it could be 4.99998 or 5.000001 and so on.  But we can still take the area under the PDF by taking 
the limit of the sum, as the horizontal increments get smaller and smaller – the Riemann method, that you 
remember from Calculus.  So to find the probability of X being equal to a set of values we integrate the PDF 
between those values, so  

{ } ( )
b

a

P a X b p x dx≤ ≤ = ∫ . 

The CDF, the probability of observing a value less than some parameter, is therefore the integral with 

−∞  as the lower limit of integration, so { } ( )
b

P X b p x dx
−∞

≤ = ∫ . 

For this class you aren't required to use calculus but it's helpful to see why somebody might want to 
use it.  (Note that many of the statistical distributions we'll talk about come up in solving partial differential equations such as are commonly used in 
finance – so if you're thinking of a career in that direction, you'll want even more math!) 

Normal Distribution 

We will most often use the Normal Distribution – but usually the first question from students is "Why 
is that crazy thing normal?!!"  You're not the only one to ask.  Be patient, you'll see why; for now just 
remember  𝑒𝑒−𝑥𝑥2.  

In statistics it is often convenient to use a normal distribution, the bell-shaped distribution that arises 
in many circumstances.  It is useful because the (properly scaled) mean of independent random draws of 
many other statistical distributions will tend toward a normal distribution – this is the Central Limit Theorem.   



Some basic facts and notation: a normal distribution with mean µ and standard deviation σ is denoted 
N(µ,σ).  (The variance is the square of the standard deviation, σ2.)  The Standard Normal distribution is when 
µ=0 and σ=1; its probability density function (pdf) is denoted pdfN(x); the cumulative density function (CDF) is 
cdfN(x) or sometimes Nor(x).  This is a graph of the PDF (the height at any point) and CDF of the normal: 

 

Example of using normal distributions: 

A paper by Hansen, Sato, & Ruedy (2012) showed these decadal distributions of temperature 
anomalies: 



 

This shows the rightward spread of temperature deviations.  The x-axis is in standard deviations, 
which makes the various geographies easily comparable (a hot day in Alaska is different from a hot day in 
Oklahoma).  The authors define extreme heat as more than 3 standard deviations above the mean and note 
that the probability of extreme heat days has risen from less than 1% to above 10%. 

One of the basic properties of the normal distribution is that, if X is distributed normally with mean µ 
and standard deviation σ, then Y = A + bX is also distributed normally, with mean (A + bµ) and standard 
deviation bσ.  We will use this particularly when we "standardize" a sample: by subtracting its mean and 
dividing by its standard deviation, the result should be distributed with mean zero and standard deviation 1.   

In some machine learning situations, data might be standardized, i.e. subtract the mean and divide by 

standard deviation, so 𝑍𝑍 = 𝑋𝑋−𝑋𝑋�

𝑠𝑠𝑋𝑋
; or scaled to unit interval, so 𝑊𝑊 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚).  Since these are linear 

transformations, we understand how these affect the distributions. 

Oppositely, if we are creating random variables with a normal distribution, we can take random 
numbers with a N(0,1) distribution, multiply by the desired standard deviation, and add the desired mean, to 
get normal random numbers with any mean or standard deviation.  In Excel, you can create normally 
distributed random numbers by using the RAND() function to generate uniform random numbers on [0,1], 
then NORMSINV(RAND()) will produce standard-normal-distributed random draws. 

In R, just use rnorm() to get random numbers from a normal distribution; you can multiply and add to 
get other mean/stdev or you can used the canned procedure, rnorm(n, mean = 0, sd = 1). 



Motivation: Sample Averages are Normally Distributed 

Before we do a long section on how to find areas under the normal distribution, I want to address the 
big question: Why we the heck would anybody ever want to know those?!?! 

Consider a case where we have a population of people and we sample just a few to calculate an 
average.  Before elections we hear about these types of procedures all of the time: a poll that samples just 
1000 people is used to give information about how a population of millions of people will vote.  These polls 
are usually given with a margin of error ("54% of people liked Candidate A over B, with a margin of error of 
plus or minus 2 percentage points").  If you don't know statistics then polls probably seem like magic.  If you 
do know statistics then polls are based on a few simple formulas. 

For class we're using the PUMS NY data with 196,585 observations and for now concentrate on the 
income from wages (INCWAGE) data. The true average of all of those people (omitting the na values) is 
$33,795.55. (Not quite; the top income value is cut at $638,000 – people who made more are still just coded with that amount.  But don't worry 

about that for now.)  The standard deviation of the full data is 66,170. 

A histogram of the data shows that most people report zero (zero is the median value), which is 
reasonable since many of them are children or retired people.  However some report incomes up to $638,000! 

 

Taking an average of a population with such extreme values would seem to be difficult. 



Suppose that I didn't want to calculate an average for all 196,585 people – I'm lazy or I've got a real old 
and slow computer or whatever.  I want to randomly choose just 100 people and calculate the sample 
average.  Would that be "good enough"? 

Of course the first question is "good enough for what?" – what are we planning to do with the 
information?   

But we can still ask whether the answer will be very close to the true value.  In this case we know the 
true value; in most cases we won't.  But this allows us to take a look at how the sampling works. 

Here is a plot of values for 10000 different polls (each poll with just 100 people).   

 

We can see that, although there are a few polls with averages as low almost 10,000 and a few with 
averages as high as 60,000, most of the polls are close to the true mean of $33,796. 

In general the average of even a small sample is a good estimate of the true average value of the 
population.  While a sample might pick up some extreme values from one side, it is also likely to pick extreme 
values from the other side, which will tend to balance out. 

A histogram of the 10000 poll means is here: 



 

This shows that the distribution of the sample means looks like a Normal distribution – another case of 
how "normal" and ordinary the Normal distribution is. 

Of course the size of each sample, the number of people in each poll, is also important.  Sampling 
more people gets us better estimates of the true mean. 

This graph shows the results from 100 polls, each with different sample sizes. 



 

In the first set of 100 polls, on the left, each poll has just 10 people in it, so the results are quite varied.  
The next set has 20 people in each poll, so the results are closer to the true mean.  By the time we get to 100 
people in each poll (102 on the log-10-scale x-axis), the variation in the polls is much smaller. (Note that if you 
used the formulas from above instead of this Monte Carlo procedure, you would miss the asymmetry for the 
small polls.) As economists we would immediately see that there are diminishing marginal returns to sample 
size (and much of the business of polling derives from that). 

Each distribution has a bell shape, but we have to figure out if there is a single invariant distribution or 
only a family of related bell-shaped curves. 

If we subtract the mean, then we can center the distribution around zero, with positive and negative 
values indicating distance from the center.  But that still leaves us with different scalings: as the graph above 
shows, the typical distance from the center gets smaller.  So we divide by its standard deviation and we get a 
"Standard Normal" distribution. 

The Standard Normal graph is: 



 

Note that it is symmetric around zero.  Like any histogram, the area beneath the curve is a measure of 
the probability.  The total area under the curve is exactly 1 (probabilities must add up to 100%).  We can use 
the known function to calculate that the area under the curve, from -1 to 1, is 68.2689%.  This means that just 
over 68% of the time, I will draw a value from within 1 standard deviation of the center.  The area of the curve 
from -2 to 2 is 95.44997%, so we'll be within 2 standard deviations over 95.45% of the time. 

It is important to be able to calculate areas under the Standard Normal.  For this reason people used to 
use big tables (statistics textbooks still have them); now we use computers.  But even the computers don't 
always quite give us the answer that we want, we have to be a bit savvy. 

So the normal CDF of, say, -1, is the area under the pdf of the points to the left of -1: 

 

This area is 15.87%.  How can I use this information to get the value that I earlier told you, that the area 
in between -1 and 1 is 68.2689%?  Well, we know two other things (more precisely, I know them and I wrote 
them just 3 paragraphs up, so you ought to know them).  We know that the total area under the pdf is 100%.  



And we know that the pdf is symmetric around zero.  This symmetry means that the area under the other tail, 
the area from +1 all the way to the right, is also 15.87%. 

 

So to find the area in between -1 and +1, I take 100% and subtract off the two tail areas: 

 

And this middle area is 100 – 15.87 – 15.87 = 68.26. 

Sidebar: you can think of all of this as "adding up" without calculus.  On the other hand, calculus 
makes this procedure much easier and we can precisely define the cdf as the integral, from negative infinity 

to some point Z, under the pdf: 
( ) ( )

Z

cdf Z pdf x dx
−∞

= ∫
. 

So with just this simple knowledge, you can calculate all sorts of areas using just the information in the 
CDF. 



Hints on using Excel or R to calculate the Standard Normal cdf 

Excel 

Excel has norm.s.dist that assumes the mean is zero and standard deviation is one so you just use 
norm.s.dist(X, TRUE).  Read the help files to learn more.  The final argument of the normdist 
function, "Cumulative" is a true/false: if true then it calculates the cdf (area to the left of X); if false it 
calculates the pdf.  [Personally, that's an ugly and non-intuitive bit of coding, but then again, Microsoft has no sense of beauty.] 

To figure out the other way – what X value gives me some particular probability, we use 
norm.s.inv. 

All of these commands are under "Insert" then "Function" then, under "Select a 
Category" choose "Statistical". 

Google 

Mistress Google knows all.  When I google "Normal cdf calculator" I get a link to 
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/normalcdf.html. This is a simple and easy interface: 
put in the z-value to get the probability area or the inverse.  Even ask Siri! 

R 

R has functions pnorm() and qnorm().  If you have a Z value and want to find the area under the 
curve to the left of that value, use pnorm(X).  If you don't tell it otherwise, it assumes mean is zero and 
standard deviation is one.  If you want other mean/stdev combinations, add those – so leaving them out is 
same as pnorm(X, mean = 0, sd = 1) or change 0 and 1 as you wish.  If you have a probability and 
want to go backwards to find X, then use qnorm(p). 

Side Note: The basic property, that the distribution is normal whatever the time interval, is what 
makes the normal distribution {and related functions, called Lévy distributions} special.  Most distributions 
would not have this property so daily changes could have different distributions than weekly, monthly, 
quarterly, yearly, or whatever! 

Recall from calculus the idea that some functions are not differentiable in places – they take a turn 
that is so sharp that, if we were to approximate the slope of the function coming at it from right or left, we 
would get very different answers.  The function, y x= , is an example: at zero the left-hand derivative is -1; 

the right-hand derivative is 1.  It is not differentiable at zero – it turns so sharply that it cannot be well 
approximated by local values.  But it is continuous – it can be continuous even if it is not differentiable. 

Now suppose I had a function that was everywhere continuous but nowhere differentiable – at every 
point it turns so sharply as to be unpredictable given past values.  Various such functions have been derived 
by mathematicians, who call it a Wiener process; it generates Brownian motion.  (When Einstein visited CCNY 
in 1905 he discussed his paper using Brownian motion to explain the movements of tiny particles in water, 
that are randomly bumped around by water molecules.)  This function has many interesting properties – 
including an important link with the Normal distribution.  The Normal distribution gives just the right degree 
of variation to allow continuity – other distributions would not be continuous or would have infinite variance. 

Note also that a Wiener process has geometric form that is independent of scale or orientation – a 
Wiener process showing each day in the year cannot be distinguished from a Wiener process showing each 

http://www.uvm.edu/%7Edhowell/StatPages/More_Stuff/normalcdf.html


minute in another time frame.  As we noted above, price changes for any time interval are normal, whether 
the interval is minutely, daily, yearly, or whatever.  These are fractals, curious beasts described by 
mathematicians such as Mandelbrot, because normal variables added together are still normal.  (You can 
read Mandelbrot's 1963 paper in the Journal of Business, which you can download from JStor – he argues that 
Wiener processes are unrealistic for modeling financial returns and proposes further generalizations.) 

The Normal distribution has a pdf which has a formula that looks ugly but isn't so bad once you break 

it down.  It is proportional to 
2xe− .  This is what gives it a bell shape: 

  

To make this a real probability we need to have all of its area sum up to one, so the probability density 
function (PDF) for a standard normal (with zero mean and standard deviation of one) is 
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To allow a mean, µ, different from zero and a standard deviation, σ, different from one, we modify the 
formula to this: 
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σ π
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−

= . 

The connection with e is useful if it reminds you of when you learned about "natural logarithms" and 
probably thought "what the heck is 'natural' about that ugly thing?!"  But you learn that it comes up 
everywhere (think it's bad now? wait for differential equations!) and eventually make your peace with it.  So 
too the 'normal' distribution. 

If you think that the PDF is ugly then don't feel bad – its discoverer didn't like it either.  Stigler's History 
of Statistics relates that Laplace first derived the function as the limit of a binomial distribution as n →∞  but 
couldn't believe that anything so ugly could be true.  So he put it away into a drawer until later when Gauss 
derived the same formula (from a different exercise) – which is why the Normal distribution is often referred 
to as "Gaussian".  The Normal distribution arises in all sorts of other cases: solutions to partial differential 
equations; in physics Maxwell used it to describe the diffusion of gases or heat (again Brownian motion; video 
here http://fuckyeahfluiddynamics.tumblr.com/post/56785675510/have-you-ever-noticed-how-motes-of-dust-seem-to); in information theory 
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where it is connected to standard measures of entropy (Kullback Liebler); even in the distribution of prime 
factors in number theory, the Erdős–Kac Theorem. 

I'll note the statistical quincunx, which is a great word since it sounds naughty but is actually geeky 
(google it or I'll try to get an online version to play in class). 

Final note on stratified sampling: Look again at this picture, 

 

You can see, from the perspective of an economist, that the "production function" of accuracy as a 
function of the number of observations has diminishing returns – doubling the number of observations has a 
progressively smaller impact on accuracy.  This is why many government data sets have weights for over-
sampling of smaller populations.  Suppose there are two groups of people; one makes up 90% of the 
population.  Then if we randomly sample from the population, a sample of 1000 people would be expected to 
have 900 from one group (getting quite small standard errors) while just 100 from the other group (larger 
standard errors).  The marginal increase in accuracy, from increasing the sample size, is very far from equal in 
the two groups.  So many datasets oversample smaller populations – the equivalent of sampling 800 from the 
big group and 200 from the small group, then using the weights to fix the fact that the smaller group is 
oversampled.  The exact procedures of weighting vary with the dataset.  For this class, we will ignore the 
problem and not worry about the weights, but if you go on to do more stats, you can figure it out. 

Is That Big?  

Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 

Students will be able to: 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

The sample average has a normal distribution.  This is hugely important for two reasons: one, it allows 
us to estimate a parameter, and two, because it allows us to start to get a handle on the world and how we 
might be fooled.  



You calculate some statistic, maybe it’s a difference between means of two groups. But you 
immediately have to answer: is that big? Is it a big difference? 

 

Well, it's about the standard error… We have to understand the issues of sampling. 

Get a central parameter 

The basic idea is that if we take the average of some sample of data, this average should be a good 
estimate of the true mean.  For many beginning students this idea is so basic and obvious that you never 
think about when it is a reasonable assumption and when it might not be.  For example, one of the causes of 
the Financial Crisis was that many of the 'quants' (the quantitative modelers) used overly-optimistic models 
that didn't seriously take account of the fact that financial prices can change dramatically.  Most financial 
returns are not normally distributed!  But we'll get more into that later; for now just remember this 
assumption.  Later we'll talk about things like bias and consistency. 

Return to the example of loading the dice, that we tried in the first homework assignment.  Suppose 
we rolled 2 dice, and want to distinguish if either one is loaded.  Call them "A" and "B".  These are the results: 

 A B 

Number of times roll 1  
4 2 

… 2  
2 2 

… 3  
5 4 

… 4  1 2 



… 5  
4 4 

… 6  
4 6 

 

You might guess that B is loaded.  But how likely is it?  Could they both be fair? 

A comes up with a 6 on 4/20 = 0.2; B comes up as 6 on 6/20 = 0.3.  Both are higher than the expected 
value of 0.167.  They are different but is that a big difference?  (How big is 'big'?)   
 
Thinking about Sampling Distributions 

We tried to load dice, to get them to come up 6 more often.  Suppose we want to test a dice to see if it 
actually comes up 6 more often, we could roll it once.  If it comes up 6 then does that prove it's loaded?  Well 
we know that a 6 comes up 1/6 of the time even with a fair dice, so that's not too improbable.  What about if 
the first 2 rolls come up 6 – how likely is that, if the dice were fair?  Well the likelihood of getting 2 rolls of 6 is 
(1/6)*(1/6) = 1/36, so that gets less likely, under 3%.  The likelihood of getting a 6 three times in a row is even 
less, 1/6^3 = 1/216 = .0046.  So if we keep rolling and keep getting a 6 each and every time, the likelihood of 
the dice being fair just keeps falling and falling.  At some point we would decide that the likelihood of the dice 
being fair is just too low, and end the experiment. 

But what if the dice came up 6 twice out of the first 3 rolls – would that be the same level of evidence?  
Again we might want to figure out how likely it would be, for a fair dice to come up with 2/3 of the rolls as a 6.  
This is a bit more of a complicated permutation since either the first, second, or third roll could be the non-6 
roll.  Recall that we can represent it (as if in extended form of game) as: 

 
 
But quickly I get lazy and don't want to draw 6 choices, each with 6 choices, each with 6 choices, but instead 
represent the choice of rolling either a 6 or not-a-6, so 

etc…. 



 
Then figure the probabilities of each outcome, where probability of rolling 6 is 1/6 and probability of rolling 
another number is 5/6. 

Now I don't know about you, but I don't have the patience to do that for too many more rounds.  If I 
roll the dice 10 times and want to see how likely it is, that at least 3 of the 10 rolls will come up 6 … that's just 
too much! 

Fortunately we have a tool that is optimized for repeatedly doing very simple math problems, the 
computer.  So fire up R! 

 
# do one set of 10 rolls: 
set.seed(12345) 
x <- sample(6,10, replace = TRUE) 
sum(x == 6) 
 
# --------------- 
NN = 100000 
num_in_sampl <- rep(0,NN) 
set.seed(12345) 
for(indx in 1:NN) { 
  x <- sample(6,10, replace = TRUE) 
  num_in_sampl[indx] <- sum(x == 6) 
} 
 
h_s <- hist(num_in_sampl, breaks = c(-1,0,1,2,3,4,5,6,7,8,9,10)) 
prop.table(h_s$counts) 
 

The next step is to ask, "do I have to do thousands of simulations every time?"  Answer: "No, that's the 
power of stats!"  Rather than doing a lot of simulations you can just find a formula.  Sure the formula is a bit 
ugly but you've seen the program, it's not so easy either. (As you get more sophisticated you will find that 
there are tradeoffs to each method.) 

Roll a # 

Roll a 6 

# 

6 

# 

6 

#,#,# 

#,#,6 

#,6,# 

#,6,6 

6,#,# 

6,#,6 

6,6,# 

6,6,6 



Variation around central mean 

Knowing that the sample average has a normal distribution also helps us specify the variation involved 
in the estimation.  We often want to look at the difference between two sample averages, since this allows us 
to tell if there is a useful categorization to be made: are there really two separate groups?  Or do they just 
happen to look different? 

How can we try to guard against seeing relationships where, in fact, none actually exist? 

To answer this question we must think like statisticians.  To "think like a statistician" is to do mental 
handstands; it often seems like looking at the world upside-down.  But as you get used to it, you'll discover 
how valuable it is.  (There is another related question: "What if there really is a relationship but we don't find 
evidence in the sample?"  We'll get to that.) 

The first step in "thinking like a statistician" is to ask, What if there were actually no relationship;  zero 
difference?  What would we see?  A big difference would be evidence in favor of different means; a small 
difference would be evidence against.  But, in the phrase of Dierdre McCloskey, "How big is big?" 

Law of Large Numbers 

Probability and Statistics have many complications with twists and turns, but it all comes down to just 
a couple of simple ideas.  These simple ideas are not necessarily intuitive – they're not the sort of things that 
might, at first, seem obvious.  But as you get used to them, they'll become your friend. 

One basic idea of statistics is the "Law of Large Numbers" (LLN).  The LLN tells us that certain 
statistics (like the average) will very quickly get very close to the true value, as the size of the random sample 
increases.  This means that if I want to know, say, the fraction of people who are right-handed or left-handed, 
or the fraction of people who will vote for Politician X versus Y, I don't need to talk with every person in the 
population. 

This is strenuously counter-intuitive.  You often hear people complain, "How can the pollsters claim to 
know so much about voting?  They never talked to me!"  But they don't have to talk to everyone; they don't 
even have to talk with very many people.  The average of a random sample will "converge" to the true value in 
the population, as long as a few simple assumptions are satisfied. 

With computers we can take much of the complicated formulas and derivations and just do simple 
experiments.  Of course an experiment cannot replace a formal proof, but for the purposes of this course you 
don't need to worry about a formal proof. 
 
R makes this easy.  Run this little program, kind of like the dice example but for polling now: 
# create the population of people 
set.seed(1) 
prob_of_yes <- 0.45 
population_values <- runif(1000) 
pop_yes <- (population_values < prob_of_yes) 
 
# check that value should be near 0.45 although not exactly 
mean(pop_yes) 
 
# now do this the long way, for a sample of size 30 from the population 
sampl_size <- 30 
s1 <- sample(pop_yes,sampl_size) 
mean(s1) 



# you could go through and create s2, s3, etc or get lazy and do this... 
 
# number of times to do this 
NN <- 100 
 
samples_from_pop <- matrix(data = NA, nrow = 1, ncol = NN) 
for (i in 1:NN){ 
  samples_from_pop[i] <- mean(sample(pop_yes,30)) 
} 
hist(samples_from_pop) 
 
# you can go through and play with sample size, population size, and how many different 
samples to take (NN) 

You could do this with a spreadsheet, lots of formulas like "=if(RAND()<0.45,1,0)" but that's ugly!  And 
it doesn't make it easy to replicate, but with "set.seed" you should be able to replicate the same results each 
time on R.  (Read R's help on random numbers if you want to learn about pseudo-random number 
generation.) 

In the problem set, you will be asked to do some similar calculations.   

So we can formulate many different sorts of questions once we have this figured out. 

First the question of polls: if we poll 500 people to figure out if they approve or disapprove of the 
President, what will be the standard error?   

Standard Error of Average 

With some math ( ) we can figure out a formula for the standard error of the sample average.  It is 
just the standard deviation of the sample divided by the square root of the sample size.  So the sample 

average is distributed normally with mean of µ and standard error of sse
N

= .  This is sometimes written 

compactly as ~ , sX N
N

µ 
 
 

. 

Sometimes this causes confusion because in calculating the standard error, s, we divided by the 

square root of (N-1), since 
( )2

1

1

N

i
i

X X
s

N
=

−
=

−

∑
, so it seems you're dividing twice.  But this is correct: the first 

division gets us an estimate of the sample's standard deviation; the second division by the square root of N 
gets us the estimate of the sample average's standard error. 

The standardized test statistic (sometimes called Z-score since Z will have a standard normal 

distribution) is the mean divided by its standard error, 
X X XNsse s

N
= = .  This shows clearly that a larger 

sample size (bigger N) amplifies differences of X  from zero (the usual null hypothesis).  A small difference, 
with only a few observations, could be just chance; a small difference, sustained over many observations, is 
less likely to be just chance. 

One of the first things to note about this formula is that, as N rises (as the sample gets larger) the 
standard error gets smaller – the estimator gets more precise.  So if N could rise towards infinity then the 



sample average would converge to the true mean; we write this as pX µ→  where the p→  means 

"converges in probability as N goes toward infinity". 

So the sample average is unbiased.  This simply means that it gets closer and closer to the true value 
as we get more observations.  Generally "unbiased" is a good thing, although later we'll discuss tradeoffs 
between bias and variance. 

Return to the binomial distribution, and its normal approximation.  We know that std error has its 

maximum when p= ½, so if we put in p=0.5 then the standard error of a poll is, at worst, 
1

2 n
, so more 

observations give a better approximation.  See Excel sheet poll_examples.  We'll return to this once we learn a 
bit more about the standard error of means. 

 A bit of Math: 

We want to use our basic knowledge of linear combinations of normally-distributed variables to show 
that, if a random variable, X, comes from a normal distribution then its average will have a normal distribution 
with the same mean and the standard deviation of the sample divided by the square root of the sample size, 

~ , sX N
N

µ 
 
 

. 

The formula for the average is 
1

1 n

i
i

X X
n =

= ∑ .  Consider first a case where there are just 2 observations.  

This case looks very similar to our rule about, if W CX DY= + , then 

( )2 2 2 2~ , 2X Y X Y XYW N C D C D CDµ µ σ σ σ+ + + .  With N=2, this is 1 2
1 1
2 2

X X X= + , which has mean 

1 2
1 1
2 2X Xµ µ+ , and since each X observation comes from the same distribution then 1 2X Xµ µ=  so the mean is 

Xµ  (it's unbiased).  You can work it out when there are n  observations. 

Now the standard error of the mean is 
2 2

2 2 2 2 2 2
1 2 1 2 1 2

1 1 1 1 1 1 12
2 2 2 2 4 4 2X X XY X X X Xσ σ σ σ σ σ σ      + + = + = +      

      
.  The covariance can be set to zero 

because we assume that we're making an independent random sample. Again since they come from the 

same distribution, 1 2X Xσ σ=  , the standard error is 2 2 2 21 1 2 2 12
2 2 2 2 2X X X X X Xσ σ σ σ σ σ+ = = = = . 

With n observations, the mean works out the same and the standard error of the average is 
2
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Hypothesis Testing 

Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 

Students will be able to: 

 construct and interpret a confidence interval for a normally distributed random variable, and determine the 
probability that a normally distributed random variable lies inside a given confidence interval; 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

 explain the construction of confidence intervals; 

 define a hypothesis, describe the steps of hypothesis testing, interpret and discuss the choice of the null hypothesis 
and alternative hypothesis, and distinguish between one-tailed and two-tailed tests of hypotheses; 

 define and interpret a test statistic, a Type I and a Type II error, and a significance level, and explain how significance 
levels are used in hypothesis testing; 

Hypothesis Testing 

One of the principal tasks facing the statistician is to perform hypothesis tests.  These are a 
formalization of the most basic questions that people ask and analyze every day – just contorted into odd 
shapes.  But as long as you remember the basic common sense underneath them, you can look up the precise 
details of the formalization that lays on top. 

The basic question is "How likely is it, that I'm being fooled?"  Once we accept that the world is 
random (rather than a manifestation of some god's will), we must decide how to make our decisions, knowing 
that we cannot guarantee that we will always be right.  There is some risk that the world will seem to be one 
way, when actually it is not.  The stars are strewn randomly across the sky but some bright ones seem to line 
up into patterns.  So too any data might sometimes line up into patterns. 

A formal hypothesis sets a mathematical condition that I want to test.  Often this condition takes the 
form of some parameter being zero for no relationship or no difference. 

Statisticians tend to stand on their heads and ask: What if there were actually no relationship?  
(Usually they ask questions of the form, "suppose the conventional wisdom were true?")  This statement, 
about "no relationship," is called the Null Hypothesis, sometimes abbreviated as H0.   The Null Hypothesis is 
tested against an Alternative Hypothesis, HA. 

Before we even begin looking at the data we can set down some rules for this test.  We know that 
there is some probability that nature will fool me, that it will seem as though there is a relationship when 
actually there is none.  The statistical test will create a model of a world where there is actually no relationship 
and then ask how likely it is that we could see what we actually see, "How likely is it, that I'm being fooled?" 

The "likelihood that I'm being fooled" is the p-value. 

For a scientific experiment we typically first choose the level of certainty that we desire.  This is called 
the significance level.  This answers, "How low does the p-value have to be, for me to accept the formal 
hypothesis?"  To be fair, it is important that we set this value first because otherwise we might be biased in 
favor of an outcome that we want to see.  By convention, economists typically use 10%, 5%, and 1%; 5% is the 
most common. 



A five percent level of a test is conservative, it means that we want to see so much evidence that there 
is only a 5% chance that we could be fooled into thinking that there's something there, when nothing is 
actually there.  Five percent is not perfect, though – it still means that of every 20 tests where I decide that 
there is a relationship there, it is likely that I'm being fooled in one of those – I'm seeing a relationship where 
there's nothing there. 

To help ourselves to remember that we can never be truly certain of our judgment of a test, we have a 
peculiar language that we use for hypothesis testing.  If the "likelihood that I'm being fooled" is less than 5% 
then we say that the data allow us to reject the null hypothesis.  If the "likelihood that I'm being fooled" is 
more than 5% then the data do not reject the null hypothesis. 

Note the formalism: we never "accept" the null hypothesis.  Why not?  Suppose I were doing 
something like measuring a piece of machinery, which is supposed to be a centimeter long.  The null 
hypothesis is that it is not defective and so is one centimeter in length.  If I measure with a ruler I might not 
find any difference to the eye.  So I cannot reject the hypothesis that it is one centimeter.  But if I looked with 
a microscope I might find that it is not quite one centimeter!  The fact that, with my eye, I don't see any 
difference, does not imply that a better measurement could not find any difference.  So I cannot say that it is 
truly exactly one centimeter; only that I can't tell that it isn't. 

Or again with the example of dice – the 6 might come up slightly more than 1/6 of the time, maybe if I 
rolled a million times I might finally distinguish a difference.  But our hypothesis testing is much more limited, 
all we can say is that given the available tests we can't find a difference. 

So too with statistics.  If I'm looking to see if some portfolio strategy produces higher returns, then 
with one month of data I might not see any difference.  So I would not reject the null hypothesis (that the new 
strategy is no improvement).  But it is possible that the new strategy, if carried out for 100 months or 1000 
months or more might show some tiny difference. 

Not rejecting the null is saying that I'm not sure that I'm not being fooled.  (Read that sentence again; 
it's not immediately clear but it's trying to make a subtle and important point.) 

To summarize, Hypothesis Testing asks, "What is the chance that I would see the value that I've 
actually got, if there truly were no relationship?"  If this p-value is lower than 5% then I reject the null 
hypothesis of "no relationship."  If the p-value is greater than 5% then I do not reject the null hypothesis of "no 
relationship." 

The rest is mechanics. 

The null hypothesis would tell that a parameter has some particular value, say  zero: 0 : 0H µ = ; the 

alternative hypothesis is : 0AH µ ≠ .  Under the null hypothesis the parameter has some distribution (often 

normal), so ( )0 : ~ 0, std errH Nµ σ .  Generally we have an estimate for std errσ , which is se  (for small samples 

this inserts additional uncertainty).  So I know that, under the null hypothesis, 
se
µ  has a standard normal 

distribution (mean of zero and standard deviation of one).  I know exactly what this distribution looks like, it's 
the usual bell-shaped curve: 



 

So from this I can calculate, "What is the chance that I would see the value that I've actually got, if 
there truly were no relationship?," by asking what is the area under the curve that is farther away from zero 
than the value that the data give.  (I still don't know what value the data will give!  I can do all of this 
calculation beforehand.) 

A particular estimate of µ  is generally going to be X .  So the test statistic is formed with 
X
se

. 

Looking at the standard normal pdf, a value of the test statistic of 1.5 would not meet the 5% criterion 
(go back and calculate areas under the curve).  A value of 2 would meet the 5% criterion, allowing us to reject 
the null hypothesis.  For a 5% significance level, the standard normal critical value is 1.96: if the test statistic 
is larger than 1.96 (in absolute value) then its p-value is less than 5%, and vice versa.  (You can find critical 
values by looking them up in a table or using the computer.) 

Sidebar: Sometimes you see people do a one-sided test, which is within the letter of the 
law but not necessarily the spirit of the law (particularly in regression formats).  It allows for less 
restrictive testing, as long as we believe that we know that there is only one possible direction 
of deviation (so, for example, if the sample could be larger than zero but never smaller).  But in 
this case maybe the normal distribution is inapplicable.  Personally whenever I read a paper 
where the authors do a one-sided test, I immediately become suspicious. 

The test statistic can be transformed into measurements of µ  or into a confidence interval. 

If I know that I will reject the null hypothesis of 0µ =  at a 5% level if the test statistic, 
X
se

, is greater 

than 1.96 (in absolute value), then I can change around this statement to be about X .  This says that if the 
estimated value of X  is less than 1.96 standard errors from zero, we cannot reject the null hypothesis.  So 
cannot reject if: 

 1.96
X
se

<  

1.96X se<  



1.96 1.96se X se− < < . 

This range, ( )1.96 ,1.96se se− , is directly comparable to X .  If I divide X  by its standard error then this 

ratio has a normal distribution with mean zero and standard deviation of one.  If I don't divide then X  has a 
normal distribution with mean zero and standard deviation, se . 

If the null hypothesis is not zero but some other number, nullµ , then under the null hypothesis the 

estimator would have a normal distribution with mean of nullµ  and standard error, se .  To transform this to a 

standard normal would mean subtracting the mean and dividing by se , so cannot reject if 1.96nullX
se
µ−

< , 

i.e. cannot reject if X  is within the range, ( )1.96 , 1.96null nullse seµ µ− + . 

Confidence Intervals 

We can use the same critical values to construct a confidence interval for the estimator, usually 
expressed in the form 1.96X se± .  This shows that, for a given sample size (therefore se , which depends on 
the sample size) that there is a 95% likelihood that the interval formed around a given estimator contains the 
true value. 

This relates to hypothesis testing because if the confidence interval includes the null hypothesis then 
we cannot reject the null; if the null hypothesis value is outside of the confidence interval then we can reject 
the null. 

Find p-values 

We can also find p-values associated with a particular null hypothesis by turning around the process 

outlined above.  If the null hypothesis is zero, then with a 5% significance level we reject the null if X
se

 is 

greater than 1.96 in absolute value.  What if the ratio X
se

 were 2 – what is the smallest significance level that 

would still reject?  (Check your understanding: is it more or less than 5%?) 

We can compute the ratio X
se

 and then convert this number to a p-value, which is the smallest 

significance level that would still reject the null hypothesis (and if the null is rejected at a low level then it 
would automatically be rejected at any higher levels). 

Type I and Type II Errors 

Whenever we use statistics we must accept that there is a likelihood of errors.  In fact we distinguish 
between two types of errors, called (unimaginatively) Type I and Type II.  These errors arise because a null 
hypothesis could be either true or false and a particular value of a statistic could lead me to reject or not reject 
the null hypothesis, H0.  A table of the four outcomes is: 

 H0 is true H0 is false 

Do not reject H0 good! oops – Type II 

Reject H0 oops – Type I good! 



Our chosen significance level (usually 5%) gives the probability of making an error of Type I.  We 
cannot control the level of Type II error because we do not know just how far away H0 is from being true.  If 
our null hypothesis is that there is a zero relationship between two variables, when actually there is a tiny, 
weak relationship of 0.0001%, then we could be very likely to make a Type II error.  If there is a huge, strong 
relationship then we'd be much less likely to make a Type II error. 

There is a tradeoff (as with so much else in economics!).  If I push down the likelihood of making a 
Type I error (using 1% significance not 5%) then I must be increasing the likelihood of making a Type II error.   

Edward Gibbon notes that the emperor Valens would "satisfy his anxious suspicions by the 
promiscuous execution of the innocent and the guilty" (chapter 26).  This rejects the null hypothesis of 
"innocence"; so a great deal of Type I error was acceptable to avoid Type II error. 

Every email system fights spam with some sort of test: what is the likelihood that a given message is 
spam?  If it's spam, put it in the "Junk" folder; else put it in the inbox.  A Type I error represents putting good 
mail into the "Junk" folder; Type II puts junk into your inbox. 

People play with setting the null hypothesis:  

- There is an advertisement for gas, "no other brand has been proven to be better";  
- Rand Paul offered a law that would allow a drug maker to publish any claim about drug 

efficacy that has not been proven false – does this mean that the claims will be true?;   
- Regulators of chemicals face this problem: policy of prohibit use of chemicals proved to 

be unsafe vs. policy of only allow chemicals proved to be safe. 

Examples 

Assume that the calculated average is 3, the sample standard deviation is 15, and there are 100 
observations.  The null hypothesis is that the average is zero.  The standard error of the average is 

15 1.5
100

se = = .  We can immediately see that the sample average is more than two standard errors away 

from zero so we can reject at a 95% confidence level. 

Doing this step-by-step, the average over its standard error is 3 2
1.5

X
se

= = .  Compare this to 1.96 and 

see that 2 > 1.96 so we can reject.  Alternately we could calculate the interval, ( )1.96 ,1.96s s− , which is 

( ) ( )( )1.96 1.5 , 1.96 1.5− ⋅ ⋅ = (-2.94, 2.94), outside of which we reject the null.  And 3 is outside that interval.  Or 

calculate a 95% confidence interval of ( )3 2.94 0.06,5.94± = , which does not contain zero so we can reject 

the null.  The critical value for the estimate of 3 is 4.55% (found from Excel either 2*(1-NORMSDIST(2)) if 
using the standard normal distribution or 2*(1-NORMDIST(3,0,1.5,TRUE)) if using the general normal 
distribution with a mean of zero and standard error of 1.5). 

If the sample average were -3, with the same sample standard deviation and same 100 observations, 
then the conclusions would be exactly the same. 



Or suppose you find that the average difference between two samples, X and Y, (i.e. 

( )
1

1 n

i i
i

X Y X Y
n =

− = −∑ ) is -0.0378.  The sample standard deviation is 0.357.  The number of observations is 652.  

These three pieces of information are enough to find confidence intervals, do t-tests, and find p-values. 

How? 

First find the standard error of the average difference.  This standard error is 0.357 divided by the 

square root of the number of observations, so 
.357 0.01398
652

= . 

So we know (from the Central Limit Theorem) that the average has a normal distribution.  Our best 
estimate of its true mean is the sample average, -0.0378.  Our best estimate of its true standard error is the 
sample standard error, 0.01398.  So we have a normal distribution with mean -0.0378 and standard error 
0.01398. 

We can make this into a standard normal distribution by adding 0.0378 and dividing by the sample 
standard error, so now the mean is zero and the standard error is one. 

We want to see how likely it would be, if the true mean were actually zero, that we would see a value 
as extreme as -0.0378.  (Remember: we're thinking like statisticians!) 

The value of -0.0378 is 0.0378
0.01398
−  = -2.70 standard deviations from zero.    

From this we can either compare this against critical t-values or use it to get a p-value. 

To find the p-value, we can use Excel just like in the homework assignment.  If we have a standard 
normal distribution, what is the probability of finding a value as far from zero as -2.27, if the true mean were 
zero?  This is 2*(1-NORMSDIST(-2.27)) = 0.6%.  The p-value is 0.006 or 0.6%.  If we are using a 5% level of 
significance then since 0.6% is less than 5%, we reject the null hypothesis of a zero mean.  If we are using a 1% 
level of significance then we can reject the null hypothesis of a zero mean since 0.6% is less than 1%. 

Or instead of standardizing we could have used Excel's other function to find the probability in the left 
tail, the area less than -0.0378, for a distribution with mean zero and standard error 0.01398, so 
2*NORMDIST(-0.0378,0,0.01398,TRUE) = 0.6%. 

Standardizing means (in this case) zooming in, moving from finding the area in the tail of a very small 
pdf, like this: 



 

to moving to a standard normal, like this: 

 

But since we're only changing the units on the x-axis, the two areas of probability are the same. 

We could also work backwards.  We know that if we find a standardized value greater (in absolute 
value) than 1.96, we would reject the null hypothesis of zero at the 5% level.  (You can go back to your notes 
and/or HW1 to remind yourself of why 1.96 is so special.) 



We found that for this particular case, each standard deviation is of size 
.357 0.01398
652

= .  So we can 

multiply 1.96 times this value to see that if we get a value for the mean, which is farther from zero than 
0.01398*1.96 = 0.0274, then we would reject the null.  Sure enough, our value of -0.0378 is farther from zero, 
so we reject. 

Alternately, use this 1.96 times the standard error to find a confidence interval.  Choose 1.96 for a 95% 
confidence interval, so the confidence interval around -0.0378 is plus or minus 0.0274, 0.0378 0.0274− ± , 
which is the interval (-0.0652, -0.0104).  Since this interval does not include zero we can be 95% confident that 
we can reject the null hypothesis of zero. 

Sometimes we want to compare groups and ask, are they statistically significantly different from each 
other?  Our formula that we learned previously has only one n – what do we do if we have two samples? 

We want to figure out how to use the two separate standard errors to estimate the joint standard 
error; otherwise we'll use the same basic strategy to get our estimate, subtract off the null hypothesis (usually 
zero), and divide by its standard error.  We just need to know, what is that new standard error? 

To do this we use the sum of the two sample variances: if we are testing group 1 vs group 2, then a test 

of just group 1 would estimate its variance as 
2
1

1

s
n

, a test of group 2 would use 
2
2

2

s
n

, and a test of the group 

would estimate the standard error as 
2 2
1 2

1 2

s s
n n
+ . 

We can make either of two assumptions: either the standard deviations are the same (even though we 
don't know them) or they're different (even though we don't know how different).  It is more conservative to 
assume that they're different (i.e. don't assume that they're the same) – this makes the test less likely to 
reject the null. 

Assuming that the standard errors are different, we compare this test statistic against a t-distribution 

with degrees of freedom of the minimum of either ( )1 1n −  or ( )2 1n − . 

P-values 

If confidence intervals weren't confusing enough, we can also construct equivalent hypothesis tests 
with p-values.  Where the Z-statistic tells how many standard errors away from zero is the observed 
difference (leaving it for us to know that more than 1.96 implies less than 5%), the p-value calculates this 
directly.  So a p-value for the difference above, between time spent by those with a college degree and those 
with an advanced degree, is found from -4.7919/1.6403 = -2.92.  So the area in the tail to the left of -2.92 is 
NORMSDIST(-2.92) = .0017; the area in both tails symmetrically is .0034.  The p-value for this difference is 
0.34%; there is only a 0.34% chance that, if the true difference were zero, we could observe a number as big 
as -4.7919 in a sample of this size. 

Confidence Intervals for Polls 

I promised that I would explain to you how pollsters figure out the "±2 percentage points" margin of 
error for a political poll.  Now that you know about Confidence Intervals you should be able to figure these 



out.  Remember (or go back and look up) that for a binomial distribution the standard error is ( )1p p
N
−

, 

where p is the proportion of "one" values and N is the number of respondents to the poll.  We can use our 
estimate of the proportion for p or, to be more conservative, use the maximum value of p(1 – p) where is p= 

½.  A bit of quick math shows that with ( )1 1 1 1, 1 0.5
2 2 2 2

p p p= − = ⋅ = = .  So a poll of 100 people has a 

maximum standard error of 
.5 .5 .05

10100
= = ; a poll of 400 people has maximum standard error half that size, 

of .025; 900 people give a maximum standard error 0.0167, etc.   

A 95% Confidence Interval is 1.96 (from the Standard Normal distribution) times the standard error; 
how many people do we need to poll, to get a margin of error of ±2 percentage points?  We want 

( )1
1.96 .02

p p
N
−

<  so this is, at maximum where p= ½, 2401. 

A polling organization therefore prices its polls depending on the client's desired accuracy: to get ±2 
percentage points requires between 2000 and 2500 respondents; if the client is satisfied with just ±5 
percentage points then the poll is cheaper.  (You can, and for practice should, calculate how many 
respondents are needed in order to get a margin of error of 2, 3, 4, and 5 percentage points.  For extra, figure 
that a pollster needs to only get the margin to ±2.49 percentage points in order to round to ±2, so they can 
get away with slightly fewer.) 

Here's a devious problem: 

1. You are in charge of polling for a political campaign.  You have commissioned a poll of 300 likely voters.  
Since voters are divided into three distinct geographical groups (A, B and C), the poll is subdivided into three groups with 
100 people each.  The poll results are as follows: 

  total  A B C 
 number in favor of candidate 170  58 57 55 
 number total 300  100 100 100 

Note that the standard deviation of the sample (not the standard error of the average) is given. 

a. Calculate a t-statistic, p-value, and a confidence interval for the main poll (with all of the people) 
and for each of the sub-groups. 

b. In simple language (less than 150 words), explain what the poll means and how much confidence 
the campaign can put in the numbers. 

c. Again in simple language (less than 150 words), answer the opposing candidate's complaint, 
"The biased media confidently says that I'll lose even though they admit that they can't be sure about any of the 
subgroups!  That's neither fair nor accurate!" 

Complications from a Series of Hypothesis Tests 

Often a modeler will make a series of hypothesis tests to attempt to understand the inter-relations of 
a dataset.  However while this is often done, it is not usually done correctly.  Recall from our discussion of 
Type I and Type II errors that we are always at risk of making incorrect inferences about the world based on 
our limited data.  If a test has an significance level of 5% then we will not reject a null hypothesis until there is 
just a 5% probability that we could be fooled into seeing a relationship where there is none.  This is low but 



still is a 1-in-20 chance.  If I do 20 hypothesis tests to find 20 variables that significantly impact some variable 
of interest, then it is likely that one of those variables is fooling me (I don't know which one, though).  It is also 
likely that my high standard of proof meant that there are other variables which are more important but 
which didn't seem it. 

Sometimes you see very stupid people who collect a large number of possible explanatory variables, 
run hundreds of regressions, and find the ones that give the "best-looking" test statistics – the ones that look 
good but are actually entirely fictitious.  Many statistical programs have procedures that will help do this; help 
the user be as stupid as he wants. 

Why is this stupid?  It completely destroys the logical basis for the hypothesis tests and makes it 
impossible to determine whether or not the data are fooling me.  In many cases this actually guarantees that, 
given a sufficiently rich collection of possible explanatory variables, I can run a regression and show that some 
variables have "good" test statistics – even though they are completely unconnected.  Basically this is the 
infamous situation where a million monkeys randomly typing would eventually write Shakespeare's plays.  A 
million earnest analysts, running random regressions, will eventually find a regression that looks great – 
where all of the proposed explanatory variables have test statistics that look great.  But that's just due to 
persistence; it doesn't reflect anything about the larger world.   

In finance, which throws out gigabytes of data, this phenomenon is common.  For instance there used 
to be a relationship between which team won the Super Bowl (in January) and whether the stock market 
would have a good year.  It seemed to be a solid result with decades of supporting evidence – but it was 
completely stupid and everybody knew it.  Analysts still work to get slightly-less-implausible but still 
completely stupid results, which they use to sell their securities. 

Consider the logical chain of making a number of hypothesis tests in order to find one supposedly-best 
model.  When I make the first test, I have 5% chance of making a Type I error.  Given the results of this test, I 
make the second test, again with a 5% chance of making a Type I error.  The probability of not making an 
error on either test is (.95)(.95) = .9025 so the significance level of the overall test procedure is not 5% but 1 - 
.9025 = 9.75%.  If I make three successive hypothesis tests, the probability of not making an error is .8574 so 
the significance level is 14.26%.  If I make 10 successive tests then the significance level is over 40%!  This 
means that there is a 40% chance that the tester is being fooled, that there is not actually the relationship 
there that is hypothesized – and worse, the stupid tester believes that the significance level is just 5%. 

Issues with Canned Tests  
Students often use a pre-written statistical test to declare that some difference is or is not statistically 
significant.  This is a great efficiency!  But it shouldn't come at the expense of understanding.  What is being 
measured?  To state that something is statistically significant is to state that it is "big" – so you'd better make 
sure that you know what in fact is big!  

 
Let me give an example from an old exam.  Take a moment to do this problem.  In a medical study (reference 
below), people were randomly assigned to use either antibacterial products or regular soap.  In total 592 
people used antibacterial soap; 586 used regular soap.  It was found that 33.1% of people using antibacterial 
products got a cold; 32.3% of people using regular soap got colds. 

a. Test the null hypothesis that there is no difference in the rates of sickness for people using regular 
or antibacterial soap. (What is the p-value?)  
Standard deviation : sqrt(p*(1-p)) : sqrt(.331*(1-.331)) 
Standard error: sqrt(p(1-p))/sqrt(n) : sqrt(.331(1-.331))/sqrt(592) 
Difference .331 - .323 



Standard error of difference: 
2 2
1 2

1 2

s s
n n
+  

b. Create a 95% confidence interval for the difference in sickness rates.  What is the 90% confidence 
interval?  The 99% interval? 

E.L.Larson, S.X. Lin, C. Gomez-Pichardo, P. Della-Latta, (2004).  "Effect of Antibacterial Home Cleaning and Handwashing Products 
on Infectious Disease Symptoms: A Randomized Double-Blind Trial," Ann Intern Med, 140(5), 321-329. 
 
Many students obliged by forming a statistical test to show whether there was a significant difference, but 
without ever noticing the counter-intuitive direction!  In this case a test of statistical significance is useless 
and irrelevant – certainly you don't need to do any calculations to assert that this study shows no beneficial 
effect of antibacterial soap! 
 
On many homework assignments so far, I've observed similar answers.  Students rush into the mechanics of 
the test without any assessment.  A statistical test is an important component of an argument but it is not the 
alpha and omega.  Much more of the time and mental effort needs to go into thinking about the other factors 
– why might you observe these values?  Have you got the right measure in the first place?  Have you got a 
reasonable sample?  What are some of the possible hypotheses that explain the difference?  Is there a way to 
eliminate some of these hypotheses or to reduce the variation?  
 
Once you've done the hard thinking and got an interesting measure, you can ask whether it is statistically 
significant.  And this class will help you be more adroit with those tests. 

Bayesian Stats 
A reminder about basic stats – and illustration of the power of Bayesian statistics. 
 
We did this example before: a 99% accurate test reveals that a person tests positive for a disease.  How likely 
does the patient actually have the disease? 
 
It depends. 
 
If population overall has prevalence of 0.1%, then testing 1000 people will find the one person with disease 
plus 10 who don't have it (1% error of 99% test; 1% of 1000 = 10) – so a positive test for the disease means a 
1/11 chance of actually having it. 
 
On the other hand, if a subgroup of the population has a higher prevalence (say 1%) then putting together 
this prior information with the fact of a positive test implies that a positive test means about a 50% chance 
that the patient actually has the disease (10 people who have it plus 10 false positives). 
 
So in the first case, the expected value of whether the person has the disease is 0.09 (=1/11); in the second 
case the expected value is 0.5.  So the expected value depends on the empirical information (positive test 
result) but also the prior expectation (what is your guess of prevalence in subgroup). 
 
In much of stats you can see this tradeoff between data and prior.  In this case, with one data point, the prior 
is very important.  With more data the importance of the prior recedes, but there are many important cases 
where people's priors remain a key determinant. 



Details of Distributions T-distributions, chi-squared, etc. 

Take the basic methodology of Hypothesis Testing and figure out how to deal with a few 
complications. 

T-tests 

The first complication is if we have a small sample and we're estimating the standard deviation.  In 
previous examples, we used a large sample.  For a small sample, the estimation of the standard error 
introduces some additional noise – we're forming a hypothesis test based on an estimation of the mean, 
using an estimation of the standard error.  

How "big" should a "big" sample be?  Evidently if we can easily get more data then we should use it, 
but there are many cases where we need to make a decision based on limited information – there just might 
not be that many observations.  Generally after about 30 observations is enough to justify the normal 
distribution.  With fewer observations we use a t-distribution. 

To work with t-distributions we need the concept of "Degrees of Freedom" (df).  This just takes 
account of the fact that, to estimate the sample standard deviation, we need to first estimate the sample 

average, since the standard deviation uses ( )2

1

N

i
i

X X
=

−∑ .  So we don't have as many "free" observations.  You 

might remember from algebra that to solve for 2 variables you need at least two equations, three equations 
for three variables, etc.  If we have 5 observations then we can only estimate at most five unknown variables 
such as the mean and standard deviation.  And "degrees of freedom" counts these down. 

If we have thousands of observations then we don't really need to worry.  But when we have small 
samples and we're estimating a relatively large number of parameters, we count degrees of freedom. 

The family of t-distributions with mean of zero looks basically like a Standard Normal distribution with 
a familiar bell shape, but with slightly fatter tails.  There is a family of t-distributions with exact shape 
depending on the degrees of freedom; lower degrees of freedom correspond with fatter tails (more variation; 
more probability of seeing larger differences from zero). 

This chart compares the Standard Normal PDF with the t-distributions with different degrees of 
freedom. 



 

This table shows the different critical values to use in place of our good old friend 1.96: 
Critical Values for t vs N      

df 95%  90%  99%  
5 2.57   2.02   4.03  

10 2.23  1.81  3.17  
20 2.09  1.72  2.85  
30 2.04  1.70  2.75  
50 2.01  1.68  2.68  

100 1.98  1.66  2.63  
Normal 1.96   1.64   2.58  

       

The higher numbers for lower degrees of freedom mean that the confidence interval must be wider – 
which should make intuitive sense.  With just 5 or 10 observations a 95% confidence interval should be wider 
than with 1000 or 10,000 observations (even beyond the familiar sqrt(N) term in the standard error of the 
average). 

T-tests with two samples 

When we're comparing two sample averages we can make either of two assumptions: either the 
standard deviations are the same (even though we don't know them) or they could be different.  It is more 
conservative to assume that they're different (i.e. don't assume that they're the same) – this makes the test 
less likely to reject the null. 

Assuming that the standard errors are different, we compare this test statistic against a t-distribution 
with degrees of freedom of the minimum of either ( )1 1n −  or ( )2 1n − . 
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Sometimes we have paired data, which can give us more powerful tests.  

We can test if the variances are in fact equal, but a series of hypothesis tests can give us questionable 
results. 

Note on the t-distribution: 

Talk about the t distribution always makes me thirsty.  Why?  It was originally called "Student's t 
distribution" because the author wanted to remain anonymous and referred to himself as just a student of 
statistics.  William Gosset worked at Guinness Brewing, which had a policy against its employees 
publishing material based on their work – they didn't want their brewing secrets revealed!  It's amusing to 
think that Gosset, who graduated top of his class from the one of the world's top universities in 1899, 
went to work at Guinness – although at the time that was a leading industrial company doing cutting-
edge research.  A half-century later, the brightest students from top universities would go to GM; after a 
century the preferred destinations would be Google or Goldman Sachs.  The only thing those companies 
have in common is the initial G. 

Other Distributions 

There are other sampling distributions than the Normal Distribution and T-Distribution.  There are χ2 
(Chi-Squared) Distributions (also characterized by the number of degrees of freedom); there are F-
Distributions with two different degrees of freedom.  For now we won't worry about these but just note that 
the basic procedure is the same: calculate a test statistic and compare it to a known distribution to figure out 
how likely it was, to see the actual value. 

(On Car Talk they joked, "I once had to learn the entire Greek alphabet for a college class.  I was taking a course in ... 
Statistics!")  
  

Simple Machine Learning 
From basic notions of mean and standard deviation, we can quickly move to some simple types of machine 
learning.  This is a great example of a very simple idea that has some fancy-sounding terminology.  The idea is 
that if you want to classify a new observation then the easiest guess is to ask how old observations that were 
very near were classified.  "Birds of a feather flock together," or "You're judged by the company you keep." 
 
There are many possibilities, where we gather data on some preliminary values and try to predict something 
else.  If we have a big dataset on past students who were admitted or not to a certain program, we could use 
this data to predict future admits.  Lots of marketing might use this sort of algorithm: if consumers are similar 
by some characteristics then they might be similarly receptive to a certain ad. 
 
With the PUMS data, we can try to predict which borough of the city a person lives in.  Note that this is the 
inverse of the problem that is often posed, "oh I can tell you're from Brooklyn," because…  This is looking at 
the opposite: are there certain characteristics that allow us to predict what borough a person lives in? 
 
Alternately, the Consumer Expenditure Survey data has information on the type of heat used (coded as 1 
natural gas, 2 electricity, 3 oil, 4 other, 5 none).  We want to guess a new observation based on households 
that are "near". 
 



The machine learning technique called "K Nearest Neighbors" or "k-nn" uses other observations that are 
"nearby" to try to classify new observations. 
 
What does "near" mean?  If we have a list of numeric data then the temptation is to just use simple distance 
(typically Euclidean).  There are two aspects to this choice: first, what variables are helpful in classification; 
second, how are these variables scaled?  The choice of what variables is a bit tricky since we want to find 
some good ones but not too many (too many, relative to the size of the data, gets into the "curse of 
dimensionality" and there are usually few neighbors).  That usually requires a bit of background knowledge – 
this is called "machine learning" but it's actually strongly human-controlled machine learning (so cyborg 
learning?). 
 
The second part of "near" is a bit more subtle: the scaling of each variable is important.  If a college is 
classifying high school students as either admit or not, they might use GPA and SAT.  If HS GPA is on a scale 
of 0-4 then for selective colleges most of the relevant admissions will have GPA from 3.5-4.  SAT scores on the 
other hand (for now assume they're math plus verbal) could have differences of hundreds of points.  So the 
SAT score variation will swamp the GPA variation.  (This is why some people think of scores on standardized 
tests as their percentile.) 
 

Detour on Ranking 
We often see statistics reported that rank a number of different units based on a number of different 
measures.  For instance, these could be the US News ranking of colleges, or magazine rankings of city 
livability, or sports rankings of college teams, or any of a multitude of different things.  We would hope that 
statistics could provide some simple formulas; we would hope in vain. 
 
Education: College rankings try to combine student/faculty ratios, measures of selectivity, SAT scores, GPA; 
some add in numbers of bars near campus or the prestige of journals in which faculty publish.  What is best?  
School teachers face efforts to rank them, by student test score improvements as well as other factors; 
schools and districts are ranked by a variety of measures.  
Sports might seem to have it relatively easy since there is a single ranking given by pre-arranged rules, but 
still fans can argue: a team has a good offense because they scored a lot (even though some other team won 
more games); some players are better on defense but worse on offense.  Sports Illustrated tried to rank the 
100 all-time best sports stars, somehow comparing baseball player Babe Ruth with the race horse Secretariat!  
Most magazines know that rankings drive sales and give buzz. 
Food nutrition trades off calories, fat content, fiber, vitamin and mineral content; who is to say whether kale 
or blueberries are healthier?  Aren't interaction effects important?  Someone trying to lose weight would 
make a very different ranking than someone training for a marathon. 
Sustainability or "green" rankings are difficult: there are so many trade-offs!  If we care about global warming 
then we look at CO2 emissions, but what about other pollutants?  Is nuclear power better than natural gas?  
Ethical consumption might also consider the material conditions of workers (fair-trade coffee or no-
sweatshop clothing) or other considerations. 
Politics: which political party is better for the economy?  Could measure stock returns or unemployment rate 
or GDP growth or hundreds of others.  Average wage or median earnings (household or individual)?  Each set 
of measures could give different results.  You can try this yourself, get some data from FRED 
(http://research.stlouisfed.org/fred2/) and go wild. 
 
In the simplest case, if there is just a single measured variable, we can rank units based on this single 
measure, however even in this case there is rarely a clear way of specifying which rankings are based on 
differences that are large and which are small.  (The statistical theory is based on "order statistics.")  If the 

http://research.stlouisfed.org/fred2/


outcome measure has, for example, a normal distribution, then there will be a large number of units with 
outcomes right around the middle, so even small measurement errors can make a big difference to ranking. 
 
In the more complicated (and more common) case, we have a variety of measures of outcomes and want to 
rank units based on some amalgamation of these outcomes.  A case where a large number of inputs 
generates a single unit output looks like a utility function from micro theory: I face a choice of hundreds (or 
thousands) of different goods, which I put into a single ranking: I say that the utility of some bundle of goods 
is higher than the utility of some other bundle and so would rank it higher (even if both were affordable).   
 
However there is no way to generate a composite utility function for a group of people that completely and 
successfully takes account of the information of individual choices!  (This result is due to CCNY alumnus and 
Nobel Laureate Ken Arrow.) 
 
In general many rankings can be substantially changed by adding factors or even changing the units of certain 
of the factors (changing the measure of "near" as discussed before). 
 
Many rankings take an equal weighting of each item, but there is absolutely no good reason to do this 
generally: why would we believe that each measure is equally valid?  Some rankings might arbitrarily choose 
weights or take a separate survey to find weights (equally problematic!).  You could average what fraction of 
measures achieve some hurdle. 
 
One possible way around this problem is to just ask for people's rankings (let them figure out what weights to 
use in their own utility functions) and report some aggregation. However here again there is no single method 
that is guaranteed to give correct aggregations (this is the Ken Arrow result again).  Some surveys ask people 
to rank units from 1-20, then add the rankings and the unit with the lowest number wins.  But what if some 
people rank number 1 as far ahead of all of their competitors, while others see the top 3 as tight together?  
This distance information is omitted from the rankings.  Some surveys might, instead, give 10 points for a #1 
ranking, 8 points for #2, and so on – but again this presupposes some distance between the ranks. 
 
This is not to say that ranking is hopeless or never informative, just that there is no single path that will 
inerrantly give the correct result.  Working through various rankings, an analyst might determine that a broad 
swathe of weights upon the various measures would all give similar rankings to certain outliers.  It would be 
useful to know that a particular unit is almost always ranked near the top while some other one is nearly 
always at the bottom. 
 
As economists we must also think about the game theory around these rankings: there will usually be a 
dynamic game underway.  If a prominent publication ranks colleges by some set of numbers, then lower-
ranked colleges will try to change their numbers to improve their rank.  There are a variety of ways to do this, 
in a range from honest to nefarious (historically many simply lied, since there was essentially a zero penalty to 
dishonesty).  High schools do this when evaluated based on test scores. 
 
Cathy O'Neil's new book, Weapons of Math Destruction, gives many more examples of problems that arise. 

Other Ignorant Beliefs  
While I'm working to extirpate popular heresies, let me address another one, which is particularly common when the 
Olympics roll around: the extraordinary belief that outliers can give useful information about the average value.  We hear 
these judgments all of the time: some country wins an unusual number of Olympic medals, thus the entire population of 
the country must be unusually skilled at this task.  Or some gender/race/ethnicity is overrepresented in a certain profession 
thus that gender/race/ethnicity is more skilled on average.  Or a school has a large number of winners of national 
competitions, thus the average is higher.  Really? 



 
Statistically speaking, the extreme values of a distribution depend on many parameters such as the higher moments.  If I 
have two distributions with the exact same mean, standard deviation, and skewness, but different values of kurtosis, then 
one distribution will systematically have higher extremes (by definition of kurtosis).  So in general it is not true to infer that 
a higher number of extreme values implies a higher mean.  But people do. 

 
Rankings can be shifted by different values of "near" as can machine learning algorithms.  It is up to you to 
learn about how to use these most adroitly. 
 
The variation in a measure is sometimes called its "information".  Consider even a simple case where 
students' grades in a class are determined by even weighting of 2 exams.  If scores on one exam are much 
more variable than scores on the other exam then they don't actually end up contributing equal weight to 
student ranking.  (Think of the limiting case where everyone gets the same score on one exam, therefore it 
has no contribution to ranking even if it is given 50% weight.) 
 
A common way to manage this is to standardize the predictors (subtract mean and divide by standard 
deviation) or scale them to be all in the [0,1] interval, although this is far from perfect.  There is an art to 
choosing predictors.  Although it might not seem obvious, this is essentially the same problem as with 
rankings. 
 
Below is a simple program that you can modify and improve. It tries to classify what borough the people in 
NYC live in. I leave plenty of room for you to improve and begin by just using the predictors of a person's 
income and how much they pay for their housing (whether rented or owned). 
 
It uses a technique that we'll often return to: splitting the data into a training set and a test set. If the point of 
a model is to predict some data, then I want to test it out on some data that was not used for training. For 
example you've doubtless taken classes with various types of exams. Sometimes the instructor will give 
students a number of practice problems then the exam would consist of some of those problems. Other times 
the instructor will give practice problems but then the exam is new problems that are related to the practice 
but not identical. I think you'd agree that the second type is more difficult! 
 
We want to test our models similarly and don't just reuse data to give an easy test. We take out some of the 
data and don't use that in the estimation. The data used for estimation is the "training" data, that we use to 
train the model. The test data is separate, used to test how well that model performs on data that it hasn't 
seen before. Here we use 80% of the data as the training set and the remaining 20% as the test set. 
 
The "set seed" command is a bit of magic that lets us take a random sample but if you do it again the 
computer would take the same "random" sample. The computer doesn't actually take a random sample but it 
is actually pseudo-random where complicated algorithms create numbers that look random in many ways but 
are actually deterministic so if we start from the same value then we get the same list of random numbers. 
The "seed" sets that starting point. You might think, why not just take the first 80% of the sample, but that 
would depend on the assumption that the ordering of data is random. Many datasets have structure so the 
observations might be ordered in some way. 
 
The program finishes by using the "knn" routine from the "class" package (for various classification 
algorithms). It can use different numbers of nearest neighbors so experiments with using 1, 3, 5, 7 or 9 nearest 
neighbors for the classification and reports how accurate each one is. 
 

 
norm_varb <- function(X_in) { 



  (X_in - mean(X_in, na.rm = TRUE))/sd(X_in, na.rm = TRUE) 
} 
 
# classification problem: of people in NYC, can we classify which borough? 
# subset by in_NYC then create a factor for borough; consider only working 
age since use income 
dat_NYC <- subset(acs2017_ny, (acs2017_ny$in_NYC == 1)&(acs2017_ny$AGE > 
20)&(acs2017_ny$AGE < 66)) 
attach(dat_NYC) 
borough_f <- factor((in_Bronx + 2*in_Manhattan + 3*in_StatenI + 
4*in_Brooklyn + 5*in_Queens), levels=c(1,2,3,4,5),labels = 
c("Bronx","Manhattan","Staten Island","Brooklyn","Queens")) 
 
# what variables do we think are relevant in classifying by borough? 
# >>NOT<< PUMA since neighborhood likely perfectly classifies... 
# try income_total, owner_cost combined with rent_cost 
 
housing_cost <- OWNCOST + RENT 
norm_inc_tot <- norm_varb(INCTOT) 
norm_housing_cost <- norm_varb(housing_cost) 
 
data_use <- data.frame(norm_inc_tot,norm_housing_cost) 
good_obs_data_use <- complete.cases(data_use,borough_f) 
dat_use <- subset(data_use,good_obs_data_use) 
y_use <- subset(borough_f,good_obs_data_use) 
detach(dat_NYC) 
 
 
set.seed(12345) 
NN_obs <- sum(good_obs_data_use == 1) 
select1 <- (runif(NN_obs) < 0.8) 
 
train_data <- subset(dat_use,select1) 
test_data <- subset(dat_use,(!select1)) 
cl_data <- y_use[select1] 
true_data <- y_use[!select1] 
 
summary(cl_data) 
prop.table(summary(cl_data)) 
summary(train_data) 
 
require(class) 
for (indx in seq(1, 9, by= 2)) { 
  pred_borough <- knn(train_data, test_data, cl_data, k = indx, l = 0, prob 
= FALSE, use.all = TRUE) 
   
  num_correct_labels <- sum(pred_borough == true_data) 
  correct_rate <- num_correct_labels/length(true_data) 
  print(c(indx,correct_rate)) 
   
} 
 
# is this good?  If you just guessed randomly, how many would you get? 
# how much better can you do? 
 

 
(Let me crush a bit, I learned much of this from the great book Doing Data Science by Cathy O'Neil & Rachel 
Schutt – get it, read it, love it!) 



Jumping into OLS 

OLS is Ordinary Least Squares, which as the name implies is ordinary, typical, common – something 
that is widely used in just about every economic analysis. 

We are accustomed to looking at graphs that show values of two variables and trying to discern 
patterns.  Consider again these two graphs of financial variables. 

This plots the returns of Hong Kong's Hang Seng index against the returns of Singapore's Straits 
Times index (over the period from Jan 2, 1991 to Jan 31, 2006) 

 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) during 1989-2004. 



 

You don't have to be a highly-skilled econometrician to see the difference in the relationships.  It 
would seem reasonable that the Hong Kong and Singapore stock indexes are closely linked while the US 
stock index is not closely related to interest rates. 

So we want to ask, how could we measure these relationships?  Since these two graphs are rather 
extreme cases, how can we distinguish cases in the middle?  How can we try to guard against seeing 
relationships where, in fact, none actually exist?  We will consider each of these questions in turn. 

How can we measure the relationship? 

Facing a graph like the Hong Kong/Singapore stock indexes, we might represent the relationship by 
drawing a line, something like this: 



 

Now if this line-drawing were done just by hand, just sketching in a line, then different people would 
sketch different lines, which would be clearly unsatisfactory.  What is the process by which we sketch the line?   

Typically we want to find a relationship because we want to predict something, to find out that, if I 
know one variable, then how does this knowledge affect my prediction of some other variable.  We call the 
first variable, the one known at the beginning, X.  The variable that we're trying to predict is called Y.  So in 
the example above, the Singapore stock index is X and the Hong Kong index is Y.  The line that we would 
draw in the picture would represent our best guess of what Y would be, given our knowledge about X. 

This line is drawn to get the best guess "close to" the actual Y values – where by "close to" we actually 
minimize the average squared distance.  Why square the distance?  This is one question which we will return 
to, again and again; for now the reason is that a squared distance really penalizes the big misses.  If I square a 
small number, I get a bigger number.  If I square a big number, I get a HUGE number.  (And if I square a 
number less than one, I get a smaller number.)  So minimizing the squared distance will mean that I am 
willing to make a bunch of small errors in order to reduce a really big error.  This is why there is the "LS" in 
"OLS" -- "Ordinary Least Squares" finds the least squared difference. 

A computer can easily calculate a line that minimizes the squared distance between each Y value and 
the best prediction.  There are also formulas for it.  (We'll come back to the formulas; put a lightning bolt here 

to remind us: .) 



For a moment consider how powerful this procedure is.  A line that represents a relationship between 
X and Y can be entirely produced by knowing just two numbers: the y-intercept and the slope of the line.  In 
algebra class you probably learned the equation as: 

Y mX b= +  

where the slope is m  and the y-intercept is b .  When 0X =  then Y b= , which is the value of the line 
when the line intersects the Y-axis (when X is zero).  The y-intercept can be positive or negative or zero.  The 

slope is the value of Y
X

∆
∆

, which tells how much Y changes when X changes by one unit.  To find the predicted 

value of Y at any point we substitute the value of X into the equation. 

In econometrics we will typically use a different notation, 

 0 1Y Xβ β= +  

where now 0β  is the y-intercept and the slope is 1β .  (Econometricians looooove Greek letters like 
beta, get used to it!) 

The relationship between X and Y can be positive or negative.  Basic economic theory says that we 
expect that the amount demanded of some item will be a positive function of income and a negative function 
of price (for a normal good).  We can easily have a case where 1 0β < . 

If X and Y had no systematic relation, then this would imply that 1 0β =  (in which case, 0β  is just the 

mean of Y).  In the 1 0β =  case, Y takes on higher or lower values independently of what is the level of X. 

This is the case for the S&P 500 return and interest rates: 



 

So there does not appear to be any relationship. 

Let's fine up the notation from above a bit more: when we fit a line to the data, we do not always have 

Y exactly and precisely equal to 0 1Xβ β+ .  Sometime Y is a bit bigger, sometimes a bit smaller.  The 

difference is an error in the model.  So we should actually write 0 1Y Xβ β ε= + +  where epsilon is the error 
between the model value of Y and the actual observed value. 

Computer programs will easily compute this OLS line; even Excel will do it.  When you create an XY 
(Scatter) chart, then right-click on the data series, "Add Trendline" and choose "Linear" to get the OLS 
estimates.  

Other Notation: 

There is another possible notation, that Y Xα β= + .  This is often implicit in discussions of hedge 
funds or financial investing.  If X is the return on the broad market (the S&P500, for example) and Y is the 
return of a hedge fund, then the hedge fund managers must make a case that they can provide "alpha" – that 
for their hedge fund 0α > .  This implies that no matter what the market return is, the hedge fund will return 
better.  The other desirable case is for a hedge fund with beta near zero – which might seem odd at first.  But 
this provides diversification: a low beta means that the fund returns do not really depend on the broader 
market.  An investment with a zero beta and alpha of 0.5% is a savings account.  An investment promising 
zero beta and alpha of 20% is a fraud.  Beta equal to 1 and alpha equal to -0.2% is an index fund. 



Another Example 

This representation is powerful because it neatly and compactly summarizes a great deal of 
underlying variation.  Consider the case of looking at the time that people spend eating and drinking, as 
reported in the ATUS data; we want to see if there is a relationship with the person's age.  If we compute 
averages for each age (average time spent by people who are 18 years old, average time spent by people who 
are 19 years old, 20 years old, etc – all the way to 85 years old) along with the standard deviations we get this 
chart: 

 

There seems to be an upward trend although we might distinguish a flattening of time spent, between 
ages 30 and 60.  But all of this information takes a table of numbers with 67 rows and 4 columns s0 268 
separate numbers!  If we represent this as just a line then we need just two numbers, the intercept and the 
slope.  This also makes more effective use of the available information to "smooth out" the estimated 
relationship.  (For instance, there is a leap up for 29-year-olds but then a leap back down – do we really 
believe that there is really that sort of discontinuity or do we think this could just be the randomness of the 
data?  A fitted line would smooth out that bump.) 

Angrist & Pischke distinguish the Conditional Expectation Function as the average value of Y given 
some X; and OLS is simply the best linear predictor. 

How can we distinguish cases in the middle? 

Hopefully you've followed along so far, but are currently wondering: How do I tell the difference 
between the Hong Kong/Singapore case and the S&P500/Interest Rate case?  Maybe art historians or literary 
theorists can put up with having "beauty" as a determinant of excellence, but what is a beautiful line to 
econometricians? 



 

There are two separate answers here, and it's important that we separate them.  Many analyses 
muddle them up.  One answer is simply whether the line tells us useful information.  Remember that we are 
trying to estimate a line in order to persuade (ourselves or someone else) that there is a useful relationship 
here.  And "useful" depends crucially upon the context.  Sometimes a variable will have a small but vital 
relationship; others may have a large but much less useful relation.  To take an example from 
macroeconomics, we know that the single largest component of GDP is consumption, so consumption has a 
large impact on GDP.  However US consumption is based on the individual choices of 300m people, so it's 
difficult for policymakers to have a direct and immediate effect upon it.  Beginning students are often 
surprised to discover how important an effect inventory investment has historically had on US GDP growth, 
even though inventory adjustments are a tiny slice of GDP.  The Fed's actions have a tiny direct effect yet we 
all agree that they are very important because this tiny effect may help the economy in huge ways. 

This first question, does the line persuade, is always contingent upon the problem at hand; there is no 
easy answer.  You can only learn this by reading other people's analyses and by practicing on your own.  It is 
an art form to be learned, but the second part is science. 

The economist Dierdre McCloskey has a simple phrase, "How big is big?"  This is influenced by the 
purpose of the research and the aim of discovering a relation: if we want to control some outcome or want to 
predict the value of some unknown variable or merely to understand a relationship. 

The second question, about the usefulness and persuasiveness of the line, also depends on the relative 
sizes of the modeled part of Y and the error.  Returning to the notation introduced, this means the relative 

sizes of the predictable part of Y, 0 1Xβ β+ , versus the size of ε .  As epsilon gets larger relative to the 
predictable part, the usefulness of the model declines. 

The second question, about how to tell how well a line describes data, can be answered directly with 
statistics, and it can be answered for quite general cases. 

How can we try to guard against seeing relationships where, in fact, none actually exist? 

To answer this question we must think like statisticians, do mental handstands, look at the world 
upside-down. 

Remember, the first step in "thinking like a statistician" is to ask, What if there were actually no 

relationship; zero relationship (so 1 0β = )?  What would we see? 



If there were no relationship then Y would be determined just by random error, unrelated to X.  But 
this does not automatically mean that we would estimate a zero slope for the fitted line.  In fact we are highly 
unlikely to ever estimate a slope of exactly zero.  We usually assume that the errors are symmetric, i.e. if the 
actual value of Y is sometimes above and sometimes below the modeled value, without some oddball skew 
up or down.  So even in a case where there is actually a zero relationship between Y and X, we might see a 
positive or negative slope.  

We would hope that these errors in the estimated slope would be small – but, again, "how small is 
small?"  

Let's take another example.  Suppose that the true model is Y = 10 + 2X (so 0 10β =  and 1 2β = ).  But 
of course there will be an error; let's consider a case where the error is pretty large.  In this case we might see 
a set of points like this: 

 

When we estimate the slope for those dots, we would find not 2 but, in this case (for this particular set 
of errors), 1.61813. 

Now we consider a rather strange thing: suppose that there were actually zero relationship between X 

and Y (so that actually 1 0β = ).  Next suppose that, even though there were actually zero relation, we tried to 

plot a line and so calculated our estimate of 1β .  To give an example, we would have the computer calculate 
some random numbers for X and Y values, then estimate the slope, and we would find 1.45097.  Do it again, 
and we might get 0.36131.  Do it 10,000 times (not so crazy, actually – the computer does it in a couple of 
seconds), and we'd find the following range of values for the estimated slope: 



 

So our estimated slope from the first time, 1.61813, is "pretty far" from zero.  How far?  The estimated 
slope is farther than just 659 of those 10,000 tries, which is 6.59%. 

So we could say that, if there were actually no relationship between X and Y, but we incorrectly 
estimated a slope, then we'd get something from the range of values shown above.  Since we estimated a 
value of 1.61813, which is farther from zero than just 6.59% if there were actually no relationship, we might 
say that "there is just a 6.59% chance that X and Y could truly be unrelated but I'd estimate a value of 
1.61813." 

Now this is a more reasonable measure: "What is the chance that I would see the value, that I've 
actually got, if there truly were no relationship?"  And this percentage chance is relevant and interesting to 
think about. 

This formalization is "hypothesis testing".  We have a hypothesis, for example "there is zero relation 
between X and Y," which we want to test.  And we'd like to set down rules for making decisions so that 
reasonable people can accept a level of evidence as proving that they were wrong.  (An example of not 
accepting evidence: the tobacco companies remain highly skeptical of evidence that there is a relationship 
between smoking and lung cancer.  Despite what most researchers would view as mountains of evidence, the 
tobacco companies insist that there is some chance that it is all just random.  They're right, there is "some 
chance" – but that chance is, by now, probably something less than 1 in a billion.)  Most empirical research 
uses a value of 5% -- we want to be skeptical enough that there is only a 5% chance that there might really be 
no relation but we'd see what we saw.  So if we went out into the world and did regressions on randomly 
chosen data, then in 5 out of 100 cases we would think that we had found an actual relation.  It's pretty low 
but we still have to keep in mind that we are fallible, that we will go wrong 5 out of 100 (or 1 in 20) times. 

Under some general conditions, the OLS slope coefficient will have a normal distribution -- not a 
standard normal, though, it doesn't have a mean of zero and a standard deviation of one. 

However we can estimate its standard error and then can figure out how likely it is, that the true mean 
could be zero, but I would still observe that value. 



This just takes the observed slope value, call it 1̂β  (we often put "hats" over the variables to denote 
that this is the actual observed value), subtract the hypothesized mean of zer0, and divide by the standard 
error: 
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We call this the "t-statistic".  When we have a lot of observations, the t-statistic has approximately a 
standard normal distribution with zero mean and standard deviation of one.   

For the careful students, note that the t-statistic actually has a t-distribution, which has a shape that 
depends on the number of observations used to construct it (the degrees of freedom).  When the number of 
degrees of freedom is more than 30 (which is almost all of the time), the t-distribution is just about the same 
as a normal distribution.  But for smaller values the t-distribution has fatter tails. 

The t-statistic allows us to calculate the probability that, if there were actually a zero relationship, I 

might actually observe a value as extreme as 1̂β .  By convention we look at distance either above or below 

zero, so we want to know the probability of seeing a value as far from zero as either 1̂β  or 1̂β− .  If 1̂β  were 
equal to 1, then this would be: 

 

while if 1̂β  were another value, it would be: 



 

From working on the probabilities under the standard normal, you can calculate these areas for any 

given value of 1̂β . 

In fact, these probabilities are so often needed, that most computer programs calculate them 
automatically – they're called "p-values".  The p-value gives the probability that the true coefficient could be 
zero but I would still see a number as extreme as the value actually observed.  By convention we refer to 
slopes with a p-value of 0.05 or less (less than 5%) as "statistically significant". 

(We can test if coefficients are different from other values than just zero, but for now that is the most common so we focus on 
it.) 

Confidence Intervals for Regression Estimates 

There is another way of looking at statistical significance.  We just reviewed the procedure of taking 
the observed value, subtracting off the mean, dividing by the standard error, and then comparing the 
calculated t-statistic against a standard normal distribution. 

But we could do it backwards, too.  We know that the standard normal distribution has some 
important values in it, for example the values that are so extreme, that there is just a 5% chance that we could 
observe what we saw, yet the true value were actually zero.  This 5% critical value is just below 2, at 1.96.  So 
if we find a t-statistic that is bigger than 1.96 (in absolute value) then the slope would be "statistically 
significant"; if we find a t-statistic that is smaller than 1.96 (in absolute value) then the slope would not be 
"statistically significant".  We can re-write these statements into values of the slope itself instead of the t-
statistic. 

We know from above that 
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and we've just stated that the slope is not statistically significant if: 



1.96t < . 

This latter statement is equivalent to: 

1.96 1.96t− < <  

Which we can re-write as: 
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Which is equivalent to: 

( )( ) ( )( )1 1 1
ˆ ˆ ˆ1.96 1.96se seβ β β− < <  

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of zero, then 
the slope is not statistically significant; if we observe a slope farther from zero than 1.96 standard errors, then 
the slope is statistically significant. 

This is called a "95% Confidence Interval" because this shows the range within which the observed 
values would fall, 95% of the time, if the true value were zero.  Different confidence intervals can be 
calculated with different critical values: a 90% Confidence Interval would need the critical value from the 
standard normal, so that 90% of the probability is within it (this is 1.64). 

Details: 

- statistical significance for a univariate regression is the same as overall regression 
significance – if the slope coefficient estimate is statistically significantly different from zero, then this 
is equivalent to the statement that the overall regression explains a statistically significant part of the 
data variation. 

- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

- There are important assumptions about the regression that must hold, if we are to 
interpret the estimated coefficients as anything other than within-sample descriptors: 

o X completely specifies the causal factors of Y (nothing omitted) 
o X causes Y in a linear manner 
o errors are normally distributed (for small sample test stats) 
o errors have same variance even at different X (homoskedastic not 

heteroskedastic) 
o errors are independent of each other 

- Because OLS squares the residuals, a few oddball observations can have a large impact 
on the estimated coefficients, so must explore 

 Points: 



Calculating the OLS Coefficients 

The formulas for the OLS coefficients have several different ways of being written.  For just one X-
variable we can use summation notation (although it's a bit tedious).  For more variables the notation gets 
simpler by using matrix algebra. 

The basic problem is to find estimates of β0 and β1 to minimize the error in 0 1i i iy X eβ β= + + . 

The OLS coefficients are found from minimizing the sum of squared errors, where each error is 

defined as 0 1i i ie y Xβ β= − −  so we want to ( )
0 1 0 1
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= − −∑ ∑ .  If you know basic calculus 

then you understand that you find the minimum point by taking the derivative with respect to the control 
variables, so differentiate with respect to β0 and β1.  After some tedious algebra, find that the minimum value 

occurs when we use 0β̂  and 1̂β , where: 
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With some linear algebra, we define the equations as y X eβ= + , where y is a column vector, 
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variable, 
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
.  The OLS coefficients are 

then given as ( ) 1ˆ X X X yβ −′ ′= . 

But the computer does the calculations so you only need these if you go on to become an 
econometrician. 

To Recap: 

• A zero slope for the line is saying that there is no relationship. 

• A line has a simple equation, that Y = β0 + β1X  

• How can we "best" find a value of β? 

• We know that the line will not always fit every point, so we need to be a bit more careful 
and write that our observed Y values, Yi (i=1, …, N), are related to the X values, Xi, as: Yi = β0 + β1Xi + ui.  
The ui term is an error – it represents everything that we haven't yet taken into consideration. 



• Suppose that we chose values for β0 and β1 that minimized the squared values of the 

errors.  This would mean ( )
0 1 0 1

22
0 1, ,1 1

min min
N N

i i i
i i

u Y X
β β β β

β β
= =

= − −∑ ∑ .  This will generally give us unique 

values of β (as opposed to the eyeball method, where different people can give different answers). 

• The β0 term is the intercept and the β1 term is the slope, dY
dX

. 

• These values of β are the Ordinary Least Squares (OLS) estimates.  If the Greek letters 

denote the true (but unknown) parameters that we're trying to estimate, then denote 0β̂  and 1̂β  as 

our estimators that are based on the particular data.  We denote îY  as the predicted value of what we 

would guess Yi would be, given our estimates of β0 and β1, so that 0 1
ˆ ˆ

î iY Xβ β= + .   

• There are formulas that help people calculate 0β̂  and 1̂β  (rather than just guessing 
numbers); these are: 
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Why OLS?  It has a variety of desirable properties, if the data being analyzed satisfy some very basic 
assumptions.  Largely because of this (and also because it is quite easy to calculate) it is widely used in many 
different fields.  (The method of least squares was first developed for astronomy.) 

• OLS requires some basic assumptions: 

o The conditional distribution of ui given Xi has a mean of zero.  This is a 
complicated way of saying something very basic: I have no additional information outside of 
the model, which would allow me to make better guesses.  It can also be expressed as implying 
a zero correlation between Xi and ui.  We will work up to other methods that incorporate 
additional information. But this is why economists look for "natural experiments" where some 
X is determined by chance outside the ordinary interrelationships. 

o The X and e are i.i.d.  This is often not precisely true; on the other hand it might 
be roughly right, and it gives us a place to start. 

o Xi and ui have fourth moments.  This is technical and broadly true, whenever the 
X and Y data have a limit on the amount of variation, although there might be particular 
circumstances where it is questionable (sometimes in finance). 

• These assumptions are costly; what do they buy us?  First, if true then the OLS 
estimates are distributed normally in large samples.  Second, it tells us when to be careful. 



• Must distinguish between dependent and independent variables (no simultaneity). 

• If these are true then the OLS are unbiased and consistent.  So 0 0
ˆE β β  =   and 

1 1
ˆE β β  =  .  The normal distribution, as the sample gets large, allows us to make hypothesis tests 

about the values of the betas.  In particular, if you look back to the "eyeball" data at the beginning, you 
will recall that a zero value for the slope, β1, is important.  It implies no relationship between the 
variables.  So we will commonly test the estimated values of β against a null hypothesis that they are 
zero. 

• There are formulas that you can use, for calculating the standard errors of the β 
estimates, however for now there's no need for you to worry about them.  The computer will calculate 
them.  (Also note that the textbook uses a more complicated formula than other texts, which covers 
more general cases.  We'll talk about that later.) 

 

Regression in R 

To have R do a linear regression, we use the command "lm()" as for example  
model1 <- lm(Y ~ X1) 
summary(model1) 

This estimates a linear model of 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝜀𝜀 and reports estimates of the intercept and slope 
coefficients. 

Or with the PUMS NY data, create a variable for fraction of income spent on housing then replace the 
zero-income (thus Inf value) with missing NA values: 

fraction_housing <- (OWNCOST + RENT)/INCTOT 
is.na(fraction_housing) <- is.infinite(fraction_housing) 
model2 <- lm(fraction_housing ~ AGE) 
summary(model2) 

Regression Details 

We'll often form hypotheses about regression coefficients: t-stats, p-values, and confidence intervals – 
so that's the same basic process as before.  Usually two-sided (rarely one-sided). 

We will commonly test if the coefficients 'are significant' – i.e. is there evidence in the data that the 
coefficient is different from zero?  This goes back to our original example where we looked at the difference 
between the Hong Kong/Singapore stock returns and the US stock returns/interest rate.  A zero slope is 
evidence against any relationship – this shows that the best guess of the value of Y does not depend on 
current information about the level of X.  So coefficient estimates that are statistically indistinguishable from 
zero are not evidence that the particular X variable is useful in prediction. 

A hypothesis test of some statistical estimate uses this estimator (call it X̂ ) and the estimator's 

standard error (denote it as X̂se ) to test against some null hypothesis value, nullX .  To make the hypothesis 

test, form 
ˆ

ˆ
null

X

X XZ
se
−

= , and – here is the magic! – under certain conditions this Z will have a Standard 

Normal distribution (or sometimes, if there are few degrees of freedom, a t-distribution; later in more 



advanced stats courses, some other distribution).  The magic happens because if Z has a Standard Normal 

distribution then this allows me to measure if the estimate of X, X̂ , is very far away from nullX .  It's generally 
tough to specify a common unit that allows me to say sensible things about "how big is big?" without some 
statistical measure.  The p-value of the null hypothesis tells me, "If the null hypothesis were actually true, how 
likely is it that I would see this X̂  value?"  A low p-value tells me that it's very unlikely that my hypothesis 
could be true and yet I'd see the observed values, which is evidence against the null hypothesis. 

Often the formula, 
ˆ

ˆ
null

X

X XZ
se
−

= , gets simpler when nullX  is zero, since it is just 
ˆ ˆ

ˆ ˆ0

X X

X XZ
se se
−′ = = , 

and this is what R prints out in the regression output labeled as "t".  

This is in Chapter 5 of Stock & Watson. 

We know that the standard normal distribution has some important values in it, for example the 
values that are so extreme, that there is just a 5% chance that we could observe what we saw, yet the true 
value were actually zero.  This 5% critical value is just below 2, at 1.96.  So if we find a t-statistic that is bigger 
than 1.96 (in absolute value) then the slope would be "statistically significant"; if we find a t-statistic that is 
smaller than 1.96 (in absolute value) then the slope would not be "statistically significant".  We can re-write 
these statements into values of the slope itself instead of the t-statistic. 

We know from above that 

( ) ( )
1 1

1 1

ˆ ˆ0 t
se se
β β

β β
−

= = , 

and we've just stated that the slope is not statistically significant if: 

1.96t < . 

This latter statement is equivalent to: 

1.96 1.96t− < <  

Which we can re-write as: 

( )
1

1

ˆ
1.96 1.96

ˆse
β
β

− < <  

Which is equivalent to: 

( )( ) ( )( )1 1 1
ˆ ˆ ˆ1.96 1.96se seβ β β− < <  

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of zero, then 
the slope is not statistically significant; if we observe a slope farther from zero than 1.96 standard errors, then 
the slope is statistically significant. 

This is called a "95% Confidence Interval" because this shows the range within which the observed 
values would fall, 95% of the time, if the true value were zero.  Different confidence intervals can be 



calculated with different critical values: a 90% Confidence Interval would need the critical value from the 
standard normal, so that 90% of the probability is within it (this is 1.64). 

OLS is nothing particularly special.  The Gauss-Markov Theorem tells us that OLS is BLUE: Best Linear 
Unbiased Estimator (and need to assume homoskedasticity).  Sounds good, right?  Among the linear 
unbiased estimators, OLS is "best" (defined as minimizing the squared error).  But this is like being the best-
looking economist – best within a very small and very particular group is not worth much!  Nonlinear 
estimators may be good in various situations, or we might even consider biased estimators. 

If X is a binary dummy variable 

Sometimes the variable X is a binary variable, a dummy, Di, equal to either one or zero (for example, 

female).  So the model is 0 1i i iY D uβ β= + +  can be expressed as 0 1

0

1
0

i i
i

i i

u if D
Y

u if D
β β
β
+ + =

=  + =
.  So this is just 

saying that Y has mean β0 + β1 in some cases and mean β0 in other cases.  So β1 is interpreted as the 
difference in mean between the two groups (those with D=1 and those with D=0).  Since it is the difference, it 
doesn't matter which group is specified as 1 and which is 0 – this just allows measurement of the difference 
between them. 

Other 'tricks' of time trends (& functional form) 

• If the X-variable is just a linear change [for example, (1,2,3,...25) or (1985, 
1986,1987,...2010)] then regressing a Y variable on this is equivalent to taking out a linear trend: the 
errors are the deviations from this trend. Either the X-variable of (1,2,3,…) or (1985,1986,1987,…) gives 
the same since the slope coefficient estimates dY/dX and in either case dX=1. There is a difference in 
the intercept term only. 

• If the Y-variable is a log function then the regression is interpreted as explaining 
percent deviations (since derivative of lnY = dY/Y, the percent change).  (So what would a linear trend 
on a logarithmic form look like?) 

• If both Y and X are logs then can interpret the coefficient as the elasticity. 

• examine errors to check functional form – e.g. height as a function of age works well for 
age < 12 but then breaks down 

• plots of X vs. both Y and predicted-Y are useful, as are plots of X vs. error. 

In addition to the standard errors of the slope and intercept estimators, the regression line itself has a 
standard error.   

A commonly overall assessment of the quality of the regression is the R2 (displayed by many statistical 
programs).  This is the fraction of the variance in Y that is explained by the model so 0 ≤ R2 ≤ 1.  Bigger is 
usually better, although different models have different expectations (i.e. it's graded on a curve). 

Statistical significance for a univariate regression is the same as overall regression significance – if the 
slope coefficient estimate is statistically significantly different from zero, then this is equivalent to the 
statement that the overall regression explains a statistically significant part of the data variation. 



- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

Multiple Regression – more than one X variable 

Regressing just one variable on another can be helpful and useful (and provides a great graphical 
intuition) but it doesn't get us very far. 

Suppose we wanted to look at a modern version of the classic Engel curve study: what fraction of 
expenditure goes to food?  With the CEX data, we can define the fraction spent on food, 

fraction_food <- FOODPQ/TOTEXPPQ 

fraction_food[is.infinite(fraction_food)] <- NA 

fraction_food[fraction_food<0] <- NA # 1 reported negative total expenditure?! 

There are probably lots of factors driving this variation. For example, people who label themselves as 
white, African-American, Asian, Native American, other race, and Hispanic have different average 
expenditures.  Households where the reference person is African-American spend an average of 19.6% on 
food, Asians spend 17.5% on food, Native Americans spend 19.1%, other races spend 20.8%, whites spend 
17.8%, and Hispanics (who may be of any race) spend 21.7%.  (I will leave it as an exercise to determine if 
these are statistically significantly different.) 

There are other differences: people in their 20s average 20.13%, in their 30s spend 18.1%, in their 40s 
it's down to 17.6%, in 50s 16.8%, then people 60 and up spend 17.8% (somewhat larger).  There is a strong 
relationship with education as well: from those without a high-school diploma who spend 22.9% to those 
with an advanced degree who spend just 14.4% - suggesting that total income probably is important as well. 

So how can we keep all of these different factors straight? 

Multiple Regression in R 

Chapter 3 of Applied Econometrics in R by Kleiber and Zeileis is terrific – gives an enormous amount of 
detail for how to do lots of different things!  Most of this section of notes is based on material from that book.  
They created a package, AER, Applied Econometrics in R, which has lots of useful functions – so load that in. 

From the standpoint of just using R, there is little difference for the user between a univariate and 
multivariate linear regression.  Again use "lm()" but then add a bunch of variables to the model 
specification, so "Y ~ X1 + X2 + X3". 

In formulas, model has k explanatory variables for each of ( )1,2,i n=   observations (must have n > k) 

0 1 1, 2 2, ,i i i k k i iy x x xβ β β β ε= + + + + +  

Each coefficient estimate, notated as ˆ
jβ , has standardized distribution as t with (n – k) degrees of 

freedom. 



Each coefficient represents the amount by which the y would be expected to change, for a small 

change in the particular x-variable (i.e. j
j

y
x

β ∂
=
∂

). 

Note that you must be a bit careful specifying the variables.  Educational attainment might be coded 
with a bunch of numbers from 31 to 46 but these numbers have no inherent meaning.  So too race, 
geography, industry, and occupation.  If a person graduates high school then their grade coding changes from 
38 to 39 but this must be coded with a dummy variable.  If a person moves from New York to North Dakota 
then this increases their state code from 36 to 38; this is not the same change as would occur for someone 
moving from North Dakota to Oklahoma (40) nor is it half of the change as would occur for someone moving 
from New York to North Carolina (37).  Each state needs a dummy variable. These X-variables are not 
continuous. 

A multivariate regression can control for all of the different changes to focus on each item individually.  
So we might model a household's fraction of expenditure on food as a function of their age, family size, 
gender of the reference person, race/ethnicity, educational level (high school diploma, some college but no 
degree, Associate's, a 4-year degree, or advanced degree), if they're married or divorced/widowed/separated, 
and so forth.   

These results are: 

Model3 <- lm(fraction_food ~ AGE_REF + FAM_SIZE + female + AfAm + Asian + 
race_oth + Amindian + Hispanic + educ_hs + educ_smcoll + educ_as + 
educ_bach + educ_adv) 

 
Call: 
lm(formula = fraction_food ~ AGE_REF + FAM_SIZE + female + AfAm +  
    Asian + race_oth + Amindian + Hispanic + educ_hs + educ_smcoll +  
    educ_as + educ_bach + educ_adv) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22494 -0.06511 -0.01622  0.04491  0.83229  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.282e-01  6.472e-03  35.251  < 2e-16 *** 
AGE_REF     -4.059e-04  7.565e-05  -5.366 8.31e-08 *** 
FAM_SIZE    -1.140e-03  8.719e-04  -1.308   0.1911     
female      -4.303e-04  2.480e-03  -0.174   0.8622     
AfAm         1.931e-02  3.771e-03   5.121 3.12e-07 *** 
Asian        7.080e-03  5.812e-03   1.218   0.2232     
race_oth     2.686e-02  1.067e-02   2.518   0.0118 *   
Amindian     7.390e-03  1.370e-02   0.539   0.5896     
Hispanic     3.055e-02  3.904e-03   7.824 5.88e-15 *** 
educ_hs     -2.076e-02  3.995e-03  -5.197 2.08e-07 *** 
educ_smcoll -3.235e-02  4.237e-03  -7.634 2.58e-14 *** 
educ_as     -4.113e-02  5.024e-03  -8.187 3.17e-16 *** 
educ_bach   -5.292e-02  4.306e-03 -12.292  < 2e-16 *** 
educ_adv    -6.481e-02  5.296e-03 -12.238  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1018 on 6823 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.05925, Adjusted R-squared:  0.05746  
F-statistic: 33.06 on 13 and 6823 DF,  p-value: < 2.2e-16 
 



Take the output a piece at a time.  First it confirms what model you had called (useful when you go 
back later, after you've run lots of regressions).  Next it gives a summary of the residuals, 

𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦� = 𝑦𝑦𝑖𝑖 − �𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2�𝑥𝑥2,𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘�𝑥𝑥𝑘𝑘,𝑖𝑖� 

These can be called at any point with "residuals(model3)" so the output is simply from 
"summary(residuals(model3))".  The mean is not reported here since the model constrains the mean 
of the residuals to zero.  The fitted values, 𝑦𝑦� = 𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2�𝑥𝑥2,𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘�𝑥𝑥𝑘𝑘,𝑖𝑖, can be called as 
fitted.values(model3). You can plot these. 

Then R reports the coefficients, standard errors, t-statistics, and p-values for each term in the model.  
The coefficients and standard errors are calculated by the estimation routine.  The t-statistic is the ratio of the 

coefficient estimate divided by the standard error, 
( )
ˆ
ˆ

t
se
β
β

= .  The p-value is the area in the tails of a t-

distribution (with degrees of freedom as shown on bottom line, here "6823 DF") beyond the t-statistic.  The 
command, "coefficients(model3)", accesses the coefficient values. 

At the bottom of the R summary it shows the R-squared, the standard error of the residual (which is 
basically the same as sd(residuals(model3))), and the F-statistic, which is another measure of how 
well the model fits. 

Residuals are often used in analyses of productivity.  Suppose I am analyzing a chain's stores to try to 
figure out which are managed best.  I know that there are many reasons for variation in revenues and cost so I 
can get data on those: how many workers are there and their pay, the location of the store relative to traffic, 
the rent paid, any sales or promotions going on, etc. A regression on all of those factors delivers an estimate, 
𝑦𝑦�, of what profit would have been expected, given external factors.  Then the difference represents the 
unexplained or residual amount of variation: some stores would have been expected to be profitable and are 
indeed; some are not living up to potential; some would not have been expected to do so well but something 
is going on so they're doing much better than expected.  But in general it's tricky to assign a name to the 
residual – unless that name is "ignorance." 

You should be able to calculate the t-statistic and p-value from the coefficient estimates and standard 
errors by yourself (the next homework will give you some chances to practice that). 

You should also be able to calculate confidence intervals, although R can do that for you as well, with 
for example, confint(model3,level = 0.95). 

R will also produce lots of plots, simply with plot(model3), which gives lots of plots in sequence – 
you can pick off particular ones with plot(model3, which = 3) that will give the 3rd plot.  (The plots 
indicate that this might not be a great model.) 

You can get an Analysis of Variance (ANOVA) with anova(model3).  For now don't worry about the 
details of the output except to the final row of figures, labeled "Residuals".  This gives one of the most 
important bits of information about the model: how big are the residuals?  Remember that's the whole point 
of the OLS estimator – it minimizes the (squared) residuals.  So this gives you the value of the sum of squared 
residuals. 

We often want to know particular predictions, for example we might want to know what the model 
would predict is the fraction of expenditure for a 30-year-old female, without anyone else in the household, 



who is African-American and has a bachelor's degree.  To do this in R, we would first create the data frame 
then use the predict command: 

to_be_predicted <- data.frame(AGE_REF = 30, FAM_SIZE = 1, female = 1,  
                              AfAm = 1, Asian = 0, race_oth = 0, Amindian =0,  
                              Hispanic = 0, educ_hs = 0, educ_smcoll = 0,  
                              educ_as = 0, educ_bach = 1, educ_adv = 0) 
predict(model3, newdata = to_be_predicted, interval = "confidence") 

There is a final detail, that we use interval = "confidence" if the x-values to be predicted are 
inside the values estimated, and interval = "prediction" if the x-values are outside. 
  



(yeah, these notes start to get skimpy – you might want to, you know, actually go to class!) 

CPS Data 

We have been using various data sets; today we'll use another well-known data set, the Current 
Population Survey.  This dataset has over 200,000 people; it is the basis for the US unemployment statistics.  
The Bureau of Labor Statistics (BLS) and Census work together to put together and maintain this data; every 
March a new group of people rotates in while the old group (who answered questions for the past year) rotate 
out.  It is all publicly available: if some wacko thinks the government is fudging the unemployment statistics, 
they can go and re-calculate everything on their own to check.  I've put the data file, cps_mar2013.RData, 
onto the web along with cps_mar2013_initial_recoding.r (which you need not run) that created 
the file from the original data (and has the details of the coding) as well as cps_1.R. 

Can run a basic linear regression to find what are principal determinants of wage/salary levels (looking 
at a subset of prime-age, fulltime, year-round workers): 
model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth 
+ Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv + 
married + divwidsep + union_m + veteran + immigrant + immig2gen) 

coeftest(model1) 

This gives an estimate of how important are various educational qualifications. 

Statistical Significance  

Statistical significance of coefficient estimates is the same when we look at individual coefficients but 
more complicated for multiple coefficients: we can ask whether a group of variables are jointly significant, 
which takes a more complicated test.  We can even ask if all of the slope coefficients together are statistically 
significant. 

For a univariate regression, if the single slope coefficient is statistically significant then the overall 
regression is as well (the F statistic is the square of the t-stat in that case). 

The difference between the overall regression fit and the significance of any particular estimate is that 
a hypothesis test of one particular coefficient tests if that parameter is zero; is βi = 0?  This uses the t-statistic 

( )
ˆ
ˆ

t
se
β
β

= and compares it to a t distribution.  The test of the regression significance tests if ALL of the slope 

coefficients are simultaneously zero; if β1 = β2 = β3 = ... = βK = 0.  The latter is much more restrictive.  (See 
Chapter 7 of Stock & Watson.) 

It is often sensible to make joint tests of regression coefficients, for example with a group of dummy 
variables.  If we have a set of dummies for education levels, it is strange to think of omitting just one or two; it 
is more reasonable to ask whether education measures (overall) are statistically significant.  We might also 
want to know if individual coefficients are equal to each other (e.g. to ask if going to college, without getting 
any degree, is really different from the estimate for just a high school diploma. 

To do this in R, there is a package, linearHypothesis (part of the package, car, Companion to 
Applied Regression, which is auto-loaded by AER package).  But the commands shouldn't obscure the simple 
basic point: we evaluate variables based on how well they fit in the model. 



To consider the question of whether a set of variables is statistically significant, we basically are just 
looking at how big is the error (the Sum of Squared Errors) with and without those variables.  In general 
adding more variables to the model can never make the errors bigger (can never increase the Sum of Squared 
Errors) – basically this is a statement that the Marginal Benefit of more variables can never be negative.  But 
profit maximization requires that we balance Marginal Benefit against Marginal Cost – what is the marginal 
cost of adding more variables?  Statistical significance is one measure of profitability in this sense. 

If adding new predictors makes the error "a lot" smaller, then those predictors are jointly statistically 
significant.  The essence of statistical testing is just finding a good metric for "a lot". 

Note that we can only properly make comparisons within models – it doesn't make much sense to 
look across models.  If I have a model of the fraction of income spent on food, and another model of the level 
of income, it is difficulty to sensibly pose a question like, "in which model is education more important?"  It 
would be like asking who scored more points per game, Shaq or Jeter? – you can ask the question but it's 
difficult to interpret in a sensible way.  

But within a model we can make comparisons and many of them come down to asking, how much 
smaller are the errors? (Did the Sum of Squared Errors fall by a lot?)  Sometimes it is easiest to just estimate 
the model twice, with or without the variables of interest, and look at how much the Sum of Squared Errors 
(from ANOVA in R) fell.  But once you get some experience, you'll appreciate linearHypothesis.   

 
Finally note that "statistically significant" is different from "important".  Suppose you have some Y-

values ranging from 100 – 1000, but you notice that a particular X value is associated with the first decimal 
value.  When X has one value, the first decimal is .2; when X has another value the first decimal is 0.7.  There 
are a lot of reasons that could be the case.  This could be an interesting pattern and this could tell us subtle 
things about the world.  But a 0.5 difference, among values ranging over 3 digits, is really tiny!  A hypothesis 
of statistical significance could duly tell you that the X-value is significant (it is a good indicator of whether the 
outcome is yyy.2 or yyy.7).  But depending on the question you're asking, that could be unimportant. 

Why do we always leave out a dummy variable?  Multicollinearity.  (See Chapter 6 of Stock & Watson.) 

• OLS basic assumptions: 

o The conditional distribution of ui given Xi has a mean of zero.  This is a 
complicated way of saying something very basic: I have no additional information outside of 
the model, which would allow me to make better guesses.  It can also be expressed as implying 
a zero correlation between Xi and ui.  We will work up to other methods that incorporate 
additional information. 

o The X and errors are i.i.d.  This is often not precisely true; on the other hand it 
might be roughly right, and it gives us a place to start. 

o X and errors don't have values that are "too extreme."  This is technical (about 
existence of fourth moments) and broadly true, whenever the X and Y data have a limit on the 
amount of variation, although there might be particular circumstances where it is questionable 
(sometimes in finance). 

• So if these are true then the OLS are unbiased and consistent.  So 0 0
ˆE β β  =   and 

1 1
ˆE β β  =  .  The normal distribution, as the sample gets large, allows us to make hypothesis tests 

about the values of the betas.  In particular, if you look back to the "eyeball" data at the beginning, you 



will recall that a zero value for the slope, β1, is important.  It implies no relationship between the 
variables.  So we will commonly test the estimated values of β against a null hypothesis that they are 
zero. 

Factors in R 

R has a shortcut for lots of dummy variables – some variables are labeled as factors. You might 
wonder why I hadn't been using them earlier, but that's because R makes it too easy. You can forget what 
they mean and just trust in the magic. But as Stevie Wonder sang, 

When you believe in things that you don't understand  
Then you suffer  
Superstition ain't the way 

https://youtu.be/0CFuCYNx-1g 

So I don't want you to suffer … or at least I want to tradeoff to do more suffering early so that you will 
suffer less in the long term (the optimality of that tradeoff obviously depends on your individual 
intertemporal discount rate). 

For instance, you could define a set of dummy variables, 

educ_hs, educ_smcoll, educ_as, educ_bach, educ_adv 

Or you could define, 
educ_indx <- as.factor(educ_nohs + 2*educ_hs + 3*educ_smcoll +  

4*educ_as + 5*educ_bach + 6*educ_adv) 
levels(educ_indx)[1] <- "No HS" 
levels(educ_indx)[2] <- "HS" 
levels(educ_indx)[3] <- "Some Coll" 
levels(educ_indx)[4] <- "AS" 
levels(educ_indx)[5] <- "Bach" 
levels(educ_indx)[6] <- "Adv Deg" 
levels(educ_indx) 

In this case the regression specifications, 

lm(WSAL_VAL ~ Age + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv)  

or  

lm(WSAL_VAL ~ Age + educ_indx) 

would give the same results. (Try it!) Note that you have to make sure that R knows (either it guessed 
when the data was loaded or you explicitly used the "as.factor()" command) that the variable is a factor 
since otherwise it will treat it as a continuous variable. You can use "is.factor()" to get info about 
whether R currently thinks that a particular variable is a factor. R will automatically drop one of the dummy 
variables and will stack the output in the way it thinks makes sense. But sometimes there needs to be 
wrestling between what you want and what it wants to give you – so you have to know what is going on 
underneath and don't just rely on the R magic to do it. That's superstition. 

Heteroskedasticity-consistent errors 

You can choose to use heteroskedasticity-consistent errors as in the textbook. 

https://youtu.be/0CFuCYNx-1g


The Stock and Watson textbook uses heteroskedasticity-consistent errors (sometimes called Eicker-
Huber-White errors, after the various authors who figured out how to calculate them).  Later you can 
additionally specify heteroskedasticity- and autocorrelation-consistent (HAC) errors, sometimes called 
Newey-West. 

In linear regression these don’t change the coefficient estimates but just the standard errors of those 
estimators.  (Which is not true for nonlinear cases, which we'll be discussing later.) 

Heteroskedasticity-Consistent Errors in R 
These are HCerrors, in the “sandwich” package, which depends on “zoo” package; probably the easiest 
implementation is via the “lmtest” package.  So install those 3, 

library("zoo") 
library("sandwich") 
library("lmtest") 

 
For heteroskedasticity-consistent errors, use the coeftest() function but add the command, vcovHC. So from 
example of CPS data, use: 

coeftest(model1,vcovHC) 
 
The command coeftest will do a variety of coefficient tests; if you don't play with the defaults, you get the 
same standard errors as in the summary.  If you use vcovHC, you get the heteroskedasticity-consistent 
standard errors.  (Econometricians have worked their little butts off, coming up with variations on these, so 
there are HC0 through HC5 just in this package, don’t worry for now about which one to use.) 
 

If you compare the two sets of output, you should notice that the actual coefficient estimates are 
unchanged – it's the estimated standard errors that change.  Then those changes propagate through, so the 
t-statistics and p-values also change.  There is no generic result for whether the estimated standard errors are 
always bigger or smaller and even in the output from this simple case it goes both ways.  However the 
standard errors often tend to be bigger with the heterskedasticity correction (which means that – test 
yourself! – the t-statistics are ___ [bigger or smaller in absolute value?] and p-values are ___ [bigger or 
smaller?]). 
  



# cps_1.R 
# looking at CPS 2013 data 
# uses file from dataferret download of CPS March 2013 supplement, 
downloaded June 12 2014 
# accompanying lecture notes for KFoster class ECO B2000  
 
rm(list = ls(all = TRUE)) 
setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 
load("cps_mar2013.RData") 
 
attach(dat_CPSMar2013) 
# use prime-age,fulltime, yearround workers 
use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 
dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 
 
detach(dat_CPSMar2013) 
 
attach(dat_use) # just prime-age,fulltime, yearround workers 
 
# always a good idea to get basic stats of all of the variables in your 
regression to see if they make sense 
summary(WSAL_VAL) 
summary(Age) 
summary(female) 
summary(AfAm) 
summary(Asian) 
summary(Amindian) 
summary(race_oth) 
summary(Hispanic) 
summary(educ_hs) 
summary(educ_smcoll) 
summary(educ_as) 
summary(educ_bach) 
summary(educ_adv) 
summary(married) 
summary(divwidsep) 
summary(union_m) 
summary(veteran) 
summary(immigrant) 
summary(immig2gen) 
 
model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
 
summary(model1) 
coeftest(model1) 
#sometimes log form is preferred 
# dat_noZeroWage <- subset(dat_use,(WSAL_VAL > 0)) 
# model1a <- lm(log(WSAL_VAL) ~ Age + female + AfAm + Asian + Amindian + 
race_oth  
#              + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
#              + married + divwidsep + union_m + veteran + immigrant + 
immig2gen, data = dat_noZeroWage) 
# detach(dat_use) 
# attach(dat_noZeroWage) 
# log(mean(WSAL_VAL)) 
# mean(log(WSAL_VAL)) 
# detach(dat_noZeroWage) 
# attach(dat_use) 



# ^^ yes there are more elegant ways to do that, avoiding attach/detach - 
find them! 
 
# for heteroskedasticity consistent errors 
require(sandwich) 
require(lmtest) 
 
coeftest(model1,vcovHC) 
 
# jam nonlinear into linear regression 
model2 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 
race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
 
model3 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + I(female*Age) + 
I(female*(Age^2)) + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
# could do this with "update" function instead 
summary(model2) 
summary(model3) 
# the ANOVA function is flexible - can compare nested models 
anova(model1,model2,model3) 
 
# Applied Econometrics in R suggests also spline and kernel estimators, we 
might get to that later 
 
# subset in order to plot... 
NNobs <- length(WSAL_VAL) 
set.seed(12345) # just so you can replicate and get same "random" choices 
graph_obs <- (runif(NNobs) < 0.1) # so something like 4000 obs 
dat_graph <-subset(dat_use,graph_obs)   
 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), data = dat_graph) 
# ^^ that looks like crap since Wages are soooooooo skew!  So try to find 
ylim = c(0, ??) 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), ylim = c(0,150000), data = dat_graph) 
 
# to plot the predicted values might want to do something like, 
lines(fitted.values(model2) ~ Age) 
# but that will plot ALLLLL the values, which is 4500 too many and looks 
awful 
# so back to this, 
to_be_predicted2 <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 0, 
Amindian = 1, race_oth = 1,  
                              Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                              married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted2$yhat <- predict(model2, newdata = to_be_predicted2) 
 
lines(yhat ~ Age, data = to_be_predicted2) 
 
# now compare model3 
to_be_predicted3m <- data.frame(Age = 25:55, female = 0, AfAm = 0, Asian = 
0, Amindian = 1, race_oth = 1,  



                               Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                               married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted3m$yhat <- predict(model3, newdata = to_be_predicted3m) 
 
to_be_predicted3f <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 
0, Amindian = 1, race_oth = 1,  
                                Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                                married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted3f$yhat <- predict(model3, newdata = to_be_predicted3f) 
 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), ylim = c(0,150000), xlab = "Age", data = dat_graph) 
lines(yhat ~ Age, data = to_be_predicted3f) 
lines(yhat ~ Age, data = to_be_predicted3m, lty = 2) 
legend("topleft", c("male", "female"), lty = c(2,1), bty = "n") 
 
det_ind <- as.factor(A_DTIND) 
det_occ <- as.factor(A_DTOCC) 
 
model4 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 
race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen 
             + det_ind + det_occ) 
summary(model4) 
 
# and always remember this part... 
detach(dat_use) 
 

 
  



Nonlinear Regression  

(more properly, How to Jam Nonlinearities into a Linear Regression) 

• X, X2, X3, … Xr 

• ln(X), ln(Y), both ln(Y) & ln(X) 

• dummy variables 

• interactions of dummies 

• interactions of dummy/continuous 

• interactions of continuous variables 

There are many examples of, and reasons for, nonlinearity.  In fact we can think that the most general 
case is nonlinearity and a linear functional form is just a convenient simplification which is sometimes useful.  
But sometimes the simplification has a high price.  For example, my kids believed that age and height are 
closely related – which is true for their sample (i.e. mostly kids of a young age, for whom there is a tight 
relationship, plus 2 parents who are aged and tall).  If my sample were all children then that might be a decent 
simplification; if my sample were adults then that's lousy. 

The usual justification for a linear regression is that, for any differentiable function, the Taylor 
Theorem delivers a linear function as being a close approximation – but this is only within a neighborhood.  
We need to work to get a good approximation.  This might be the case for instance for macro models – we 
have decent econometric predictions of what happens if the Fed bumps rates from 4% to 4.25%, because we 
have a lot of similar cases.  But what happens when rates stay at 0%?  We don't have nearly as much evidence 
(certainly before 2008, very little).  So non-linearities were more important. 

Nonlinear terms 

We can return to our regression using CPS data.  First, we might want to ask why our regression is 
linear.  This is mostly convenience, and we can easily add non-linear terms such as Age2, if we think that the 
typical age/wage profile looks like this: 

 

Age 

Wage 

 

So the regression would be: 

 iiii AgeAgeWage εβββ ++++= 2
210  



(where the term "..." indicates "other stuff" that should be in the regression). 

As we remember from calculus, 

 1 2 2dWage Age
dAge

β β= + ⋅ ⋅  

so that the extra “boost” in wage from another birthday might fall as the person gets older, and even 

turn negative if the estimate of 2 0β <  (a bit of algebra can solve for the top of the hill by finding the Age that 

sets 0dWage
dAge

= ). 

We can add higher-order effects as well.  Some labor econometricians argue for including Age3 and 
Age4 terms, which can trace out some complicated wage/age profiles.  However we need to be careful of 
"overfitting" – adding more explanatory variables will never lower the R2. 

To show this in R, I will do a lot of plots – details in cps_1.R. (below) 

 

 

Logarithms 

Similarly can specify X or Y as ln(X) and/or ln(Y).   

(You also need to figure out how to work with observations where Y=0 since ln(0) doesn't give good 
results.  Dropping those observations might be OK or might not, it depends.) 

But we've got to be careful: remember from math (or theory of insurance from Intermediate Micro) 
that E[ln(Y)] IS NOT EQUAL TO ln(E[Y]) !  In cases where we're regressing on wages, this means that the log 
of the average wage is not equal to the average log wage.   

(Try it.  Go ahead, I'll wait.) 



When both X and Y are measured in logs then the coefficients have an easy economic interpretation.  

Recall from calculus that with ( )lny x=  and 1dy
dx x

= , so %dxdy x
x

= = ∆  -- our usual friend, the percent 

change.  So in a regression where both X and Y are in logarithms, then %
%j

y y
x x

β ∆ ∆
= =
∆ ∆

 is the elasticity of Y 

with respect to X.   

Also, if Y is in logs and D is a dummy variable, then the coefficient on the dummy variable is just the 
percent change when D switches from zero to one. 

So the choice of whether to specify Y as levels or logs is equivalent to asking whether dummy 
variables are better specified as having a constant level effect (i.e. women make $10,000 less than men) or 
having a percent change effect (women make 25% less than men).  As usual there may be no general answer 
that one or the other is always right! 

Recall our discussion of dummy variables, that take values of just 0 or 1, which we’ll represent as Di.  
Since, unlike the continuous variable Age, D takes just two values, it represents a shift of the constant term.  
So the regression, 

 iiii uDAgeWage +++= 310 βββ  

The equation could be also written as 

 0 1

0 3 1

0
1

i i
i

i i

Age u for D
Wage

Age u for D
β β

β β β
+ + =

=  + + + = . 

These show that people with D=0 have intercept of just β0, while those with D=1 have intercept equal 
to β0 + β3.  Graphically, this is: 

β0+β3

β0

 

 

We need not assume that the β3 term is positive – if it were negative, it would just shift the line 
downward.  We do however assume that the rate at which age increases wages is the same for both genders – 
the lines are parallel. 

Dummy Variables Interacting with Other Explanatory Variables 

The assumption about parallel lines with the same slopes can be modified by adding interaction 
terms: define a variable as the product of the dummy times age, so the regression is  



 iiiiii uAgeDDAgeWage ++++= 4310 ββββ
 

or 

 ( ) ( )0 3 1 4i i i i iWage D D Age uβ β β β= + + + +  

or 

 
( ) ( )

0 1

0 3 1 4

0
1

i i
i

i i

Age u for D
Wage

Age u for D
β β

β β β β
+ + =

=  + + + + =  

so that, for those with D=0, as before 
Age

Wage
∆
∆

=β1 but for those with D=1, 1 4
Wage
Age

β β∆
= +

∆
.  

Graphically, 

β0+β3

β0

 

so now the intercepts and slopes are different. 

So we might wonder if men and women have a similar wage-age profile.  We could fit a number of 
possible specifications that are variations of our basic model that wage depends on age and age-squared.  
The first possible variation is simply that: 

2
0 1 2 3i i i i iWage Age Age D uβ β β β= + + + + , 

which allows the wage profile lines to have different intercept-values but otherwise to be parallel (the 
same hump point where wages have their maximum value), as shown by this graph: 

 

w 

Age 
 



The next variation would be to allow the lines to have different slopes as well as different intercepts: 

2
0 1 2

2
3 4 5

i i i

i i i i i i

Wage Age Age

D D Age D Age u

β β β

β β β

= + +

+ + + +
 

which allows the two groups to have different-shaped wage-age profiles, as in this graph: 

 

w 

Age 
 

(The wage-age profiles might intersect or they might not – it depends on the sample data.) 

We can look at this alternately, that for those with D=0, 

2
0 1 2

1 22

wage Age Age
dWage Age
dAge

β β β

β β

= + +

= +
 

so the extreme value of Age (where 0dWage
dAge

= ) is 1

22
β
β
−

. 

While for those with D=1, 

( ) ( ) ( )

( ) ( )

2 2
0 1 2 3 4 5

2
0 3 1 4 2 5

1 4 2 52

Wage Age Age Age Age
Age Age

dWage Age
dAge

β β β β β β

β β β β β β

β β β β

= + + + + +

= + + + + +
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so the extreme value of Age (where 0dWage
dAge

= ) is ( )
( )

1 3

2 42
β β
β β

− +
+

.  Or write the general value, for both 

cases, as ( )
( )

1 3

2 42
D
D

β β
β β

− +
+

 where D is 0 or 1. 

This specification, with a dummy variable multiplying each term: the constant and all the explanatory 
variables, is equivalent to running two separate regressions: one for men and one for women: 



1 2

1 2

2
0

2
0

0

1

male male male
i i i i

female female female
i i i i

D
Wage Age Age u

D
Wage Age Age e

β β β

β β β

=
= + + +

=
= + + +

 

Where the new coefficients are related to the old by the identities: 
0 0 3
femaleβ β β= + , 1 1 4

femaleβ β β= + , 

and 2 2 5
femaleβ β β= + . Sometimes breaking up the regressions is easier, if there are large datasets and many 

interactions. 

Note that it would be very weird (and difficult to justify) to have an interaction of the dummy with the 
Age term but not with Age-squared or vice versa.  Why would we want to assume that, say, men and women 
have different linear effects but the same squared effect? 

The plot for the CPS data is (code is below): 

 

Interactions with R 
It is very easy to do interactions with R, maybe too easy so that you can forget what it all means.  



 
That's one reason I'm creating education dummies separately rather than using the R shortcut (creating a 
single education index of type "factor"), so that you can better see what's going on underneath.  Once you 
understand the basics, you can start using the shortcuts. 
 
In a formula, you can do interactions of, say, gender with education with just the ":" operator, so with the 
factor of "educ_indx", include "female:educ_indx" 

model1 <- lm(WSAL_VAL ~ Age + female + educ_indx + female:educ_indx + AfAm 
+ Asian + Amindian + race_oth + Hispanic + married + divwidsep + union_m + 
veteran + immigrant + immig2gen) 

summary(model1) 
 
It can be difficult to unpack the meaning all of the interaction terms.  The regression creates dummy variables 
for educational classifications, showing that people with progressively higher educational qualifications get 
more money.  But women get less at each rung: the coefficients on female interacted with education are 
negative.  So for instance a male with an associate's degree is predicted to make about $20,700 more than a 
male without even a high school diploma, but a woman with an associate's degree gets $8400 less than the 
man – so her net premium for the associate's degree is (20,700 – 8400) = 12,300. 
 
We can create a table showing the net values, like this (also setting Age = 30), 
 

 Intercept+(Age=30) HS Some Coll AS Bach Adv Deg 
male 24494 10570 20178 20737 44536 79607 
female 
difference 

-6494 -6501 -9045 -8391 -15904 -30213 

net 18001 4068 11133 12347 28632 49394 
 
So in equations this says that 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽5𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽6𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ
+ 𝛽𝛽7𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 



… + 𝛾𝛾1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾4𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ
+ 𝛾𝛾5𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝜀𝜀 

 
Then the predicted values are, say for a 30-year-old female with an associate's degree, 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� = 𝛽𝛽0 + 𝛽𝛽1(𝐴𝐴𝐴𝐴𝐴𝐴 = 30) + 𝛽𝛽2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) + 𝛽𝛽3(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛽𝛽4(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0)
+ 𝛽𝛽5(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛽𝛽6(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛽𝛽7(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 

… + 𝛾𝛾1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾3(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1)
∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛾𝛾4(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛾𝛾5(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) 

 
Which looks ferociously complicated but multiplying by zero drops many of the terms 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� = 𝛽𝛽0 + 𝛽𝛽1(𝐴𝐴𝐴𝐴𝐴𝐴 = 30) + 𝛽𝛽2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) + 𝛽𝛽3(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛽𝛽4(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0)
+ 𝛽𝛽5(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛽𝛽6(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛽𝛽7(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 

… + 𝛾𝛾1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾3(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1)
∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑆𝑆 = 1) + 𝛾𝛾4(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛾𝛾5(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) 

 
From staring at the wage penalties, you might also conclude that it looks somewhat multiplicative, that the wage penalty 
for females is around 35%-40% for all of the terms involving college.  This might motivate a log specification (which is 
usually preferred in the literature, I'm just passing over it here in order not to overwhelm with ornamentation). 

 
You might next look at gender/marital status interactions, or education/race/ethnicity interactions – there is 
no reason you can't do interactions upon interactions.  They get complicated but just write out the various 
interactions in long equation format to help remember what is what.  Just don't be a monkey about 
interpreting and understanding all of the interactions.  The limit on how many interactions comes since as 
you take finer and finer cuts, you're essentially looking at group means where the numbers in each group get 
smaller and smaller.  So you can do state-level factors interacted with gender and education, and probably 
get a decent estimate of how the wages of women-with-associates-in-NY compares with wages of women-
with-associates-in-Cali, but worse estimate of women-with-associates-in-Wyoming or some other empty 
state where nobody lives.  Multi-level models (later) try to deal with this problem. 

Testing if All the New Variable Coefficients are Zero  

You're wondering how to tell if all of these new interactions are worthwhile.  Simple: Hypothesis 
Testing!  There are various formulas, some more complicated, but for the case of homoskedasticity the 
formula is relatively simple.  

Why any formula at all – why not look at the t-tests individually?  Because the individual t-tests are 
asking if each individual coefficient is zero, not if it is zero and others as well are also zero.  That would be a 
stronger test. 

To measure how much a group of variables contributes to the regression, we look at the residual 
values – how much is still unexplained, after the various models?  And since this is OLS, we look at the 
squared residuals.  R outputs the Sum of Squares for the Residuals in the ANOVA.  We compare the sum of 
squares from the two models and see how much it has gone down with the extra variables.  A big decrease 
indicates that the new variables are doing good work.  And how do we know, how big is "big"?  Compare it to 
some given distribution, in this case the F distribution.  Basically we look at the percent change in the sum of 
squares, so something like: 
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with the wavy equals sign to show that we're not quite done.  Note that model 0 is the original model 
and model 1 is the model with the additional regressors, which will have a smaller residual (so this F can never 
be negative).   

To get from approximately equal to an equals sign, we need to make it a bit like an elasticity – what is 
the percent change in the number of variables in the model?  Suppose that we have N observations and that 
the original model has K variables, to which we're considering adding Q more observations.  Then the original 
model has (N – K – 1) degrees of freedom [that "1" is for the constant term] while the new model has (N – K – 
Q – 1) degrees of freedom, so the difference is Q.  So the percent change in degrees of freedom is 

1
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N K Q− − −
.  Then the full formula for the F test is 
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Which is, admittedly, fugly, but perhaps similar enough to elasticity formulas to seem vaguely 
reassuring.  But we know its distribution, it's F with (Q, N-K-Q-1) degrees of freedom – the F-distribution has 
2 sets of degrees of freedom.  Calculate that F, then use R to find pf(F, df1 =Q, df2 = (N-K-Q-1)) (or Excel to 
calculate FDIST(F,Q,N-K-Q-1)), to find a p-value for the test.  If the p-value is less than 5%, reject the null 
hypothesis. 

Usually you will have the computer spit out the results for you.  In R, anova(model1, model2) or 
else linearHypothesis() as we did before. 

Don't be a dummy about Dummy Variables 
 It's important to think about the implicit restrictions imposed by the dummy specification – e.g. just 
putting in a dummy for "high school diploma or above" implicitly assumes that there are two groups, each 
relatively homogenous.  So a regression of wage on just a dummy for high-school diploma assumes that there 
are two groups: those with a diploma and those without (many of whom have more than a high school 
degree) – and that each of these groups is relatively homogenous.  In many cases the data might be too 
coarse to estimate fine distinctions: some datasets distinguish between people with a high school diploma 
and those with a GED while other data lump together those categories.  (Many New Yorkers would 
distinguish which high school!)  Every model makes certain assumptions but you want to consider them. 
 It might be wise to pack the education dummies into a factor and use that factor in R rather than 
playing around choosing to put in some but not all.  This also takes care of automatically dropping one of the 
dummies (to use it as comparison).  Consider these examples (which one is wrong?): 
model1wrong <- lm(WSAL_VAL ~ educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv,  data = dat_use) 
summary(model1wrong) 
model2wrong <- lm(WSAL_VAL ~ educ_nohs + educ_hs + educ_smcoll + educ_as + 
educ_bach + educ_adv,  data = dat_use) 
summary(model2wrong) 
model3wrong <- lm(WSAL_VAL ~ educ_hs + educ_bach,  data = dat_use) 
summary(model3wrong) 



In general it is better to use underlying continuous variables if you have them (e.g. for sports, net 
points scored rather than win/loss) – this is the basic intuition that there is no need to throw out information.  
On the other hand this imposes assumptions about linearity which might be inappropriate.  For example, 

model_continuousAge <- lm(WSAL_VAL ~ Age,  data = dat_use) 
summary(model_continuousAge) 
Age_factr <- cut(dat_use$Age,breaks=25:55) 
model_factrAge <-lm(WSAL_VAL ~ Age_factr,  data = dat_use) 
summary(model_factrAge) 
plot(coef(model_factrAge)) 

 

Multiple Dummy Variables 

Multiple dummy variables, D1,i , D2,i , …,DJ,i, operate on the same basic principle.  Of course we can 
then have many further interactions!  Suppose we have dummies for education and immigrant status.  The 
coefficient on education would tell us how the typical person (whether immigrant or native) fares, while the 
coefficient on immigrant would tell us how the typical immigrant (whatever her education) fares.  An 
interaction of “more than Bachelor’s degree” with “Immigrant” would tell how the typical highly-educated 
immigrant would do beyond how the “typical immigrant” and “typical highly-educated” person would do 
(which might be different, for both ends of the education scale).   

Many, Many Dummy Variables 

Often it is sensible to use lots of dummy variables.  For example regressions to explain people's wages 
might use dummy variables for the industry in which a person works.  Regressions about financial data such 
as stock prices might include dummies for the days of the week and months of the year. 

Dummies for industries are often denoted with labels like "two-digit" or "three-digit" or similar jargon.  
To understand this, you need to understand how the government classifies industries.  A specific industry 
might get a 4-digit code where each digit makes a further more detailed classification.  The first digit refers to 
the broad section of the economy, as goods pass from the first producers (farmers and miners, first digit zero) 
to manufacturers (1 in the first digit for non-durable manufacturers such as meat processing, 2 for durable 
manufacturing, 3 for higher-tech goods) to transportation, communications and utilities (4), to wholesale 
trade (5) then retail (6).  The 7's begin with FIRE (Finance, Insurance, and Real Estate) then services in the later 
7 and early 8 digits while the 9 is for governments.  The second and third digits give more detail: e.g. 377 is for 
sawmills, 378 for plywood and engineered wood, 379 for prefabricated wood homes.  Some data sets might 
give you 5-digit or even 6-digit information.  These classifications date back to the 1930s and 1940s so some 
parts show their age: the ever-increasing number of computer parts go where plain "office supplies" used to 
be.   

The CPS data distinguishes between "major industries" with 16 categories and "detailed industry" with 
about 50.   

Creating 50 dummy variables could be tiresome so that's where R's "factor" data type comes in 
handy.  Just add in a factor into your OLS model and let R take care of the rest.  So toss in A_DTIND and 
A_DTOCC.  So add these lines and fire away, 

det_ind <- as.factor(A_DTIND) 
det_occ <- as.factor(A_DTOCC) 



In other models such as predictions of sales, the specification might include a time trend (as discussed 
earlier) plus dummy variables for days of the week or months of the year, to represent the typical sales for, 
say, "a Monday in June".  

Why are we doing all of this?  Because I want you to realize all of the choices that go into creating a 
regression or doing just about anything with data.  There are a host of choices available to you.  Some choices 
are rather conventional (for example, the education breakdown I used above) but you need to know the field 
in order to know what assumptions are common.  Sometimes these commonplace assumptions conceal 
important information.  You want to do enough experimentation to understand which of your choices are 
crucial to your results.  Then you can begin to understand how people might analyze the exact same data but 
come to varying conclusions.  If your results contradict someone else's, then you have to figure out what are 
the important assumptions that create the difference. 

If for example we wanted to have a dummy variable, D, interacted with a continuous variable, X, in a 
regression 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3(𝐷𝐷 ∗ 𝑋𝑋) + 𝑒𝑒, we could write this formula in a number of different ways in 
R.  Assuming D is already a factor (else might need to use as.factor(D)), we could write this as: lm(y ~ 
X + D + X:D) or, even more compactly, lm(y ~ X*D).  This allows each unit of D to have a different 
intercept as well as a different slope as X changes. 

Panel Data 

A panel of data contains repeated observations of a single economic unit over time.  This might be a 
survey like the CPS where the same person is surveyed each month to investigate changes in their labor 
market status.  There are medical panels that have given annual exams to the same people for decades.  
Publicly-traded firms that file their annual reports can provide a panel of data: revenue and sales for many 
years at many different firms.  Sometimes data covers larger blocks such as states in the US or, if we're 
looking at macroeconomic development, even countries over time. 

Other data sets are just cross-sectional, like the March CPS that we've used.  If we put together a 
series of cross-sectional samples that don't follow the same people (so we use the March 2012, 2011, and 
2010 CPS samples) then we have a pooled sample.  A long stream of data on a single unit is a time series (for 
example US Industrial Production or the daily returns on a single stock). 

In panel data we want to distinguish time from unit effects.  Suppose that you are analyzing sales data 
for a large company's many stores.  You want to figure out which stores are well-managed.  You know that 
there are macro trends: some years are good and some are rough, so you don't want to indiscriminately 
reward everybody in good years (when they just got lucky) and punish them in bad years (when they got 
unlucky).  There are also location effects: a store with a good location will get more traffic and sell more, 
regardless.  So you might consider subtracting the average sales of a particular location away from current 
sales, to look at deviations from its usual.  After doing this for all of the stores, you could subtract off the 
average deviation at a particular time, too, to account for year effects (if everyone outperforms their usual 
sales by 10% then it might just indicate a good economy).  You would be left with a store's "unusual" sales – 
better or worse than what would have been predicted for a given store location in that given year. 

A regression takes this even further to use all of our usual "prediction" variables in the list of X, and 
combine these with time and unit fixed effects. 

Now the notation begins.  Let the t-subscript index time; let j index the unit.  So any observations of y 

and x must be at a particular date and unit; we have ,t jy  and then the k x-variables are each ,
k
t jx  (the 

superscript for which of the x-variables).  So the regression equation is 



1 2 1
, 1 , 2 , 1 , , ,
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−= + + + + + + + , 

where jα  (alpha) is the fixed effect for each unit j, tγ  (gamma) is the time effect, and then the error is 

unique to each unit at each time. 

This is actually easy to implement, even though the notation might look formidable.  Just create a 
dummy variable for each time period and another dummy for each unit and put the whole slew of dummies 
into the regression. 

So, to take a tiny example, suppose you have 8 store locations over 10 years, 1999-2008.  You have 
data on sales (Y) and advertising spending (X) and want to look at the relationship between this simple X and 
Y.  So the data look like this: 

X1999,1 X1999,2 X1999,3 X1999,4 X1999,5 X1999,6 X1999,7 X1999,8 

X2000,1 X2000,2 X2000,3 X2000,4 X2000,5 X2000,6 X2000,7 X2000,8 

X2001,1 X2001,2 X2001,3 X2001,4 X2001,5 X2001,6 X2001,7 X2001,8 

X2002,1 X2002,2 X2002,3 X2002,4 X2002,5 X2002,6 X2002,7 X2002,8 

X2003,1 X2003,2 X2003,3 X2003,4 X2003,5 X2003,6 X2003,7 X2003,8 

X2004,1 X2004,2 X2004,3 X2004,4 X2004,5 X2004,6 X2004,7 X2004,8 

X2005,1 X2005,2 X2005,3 X2005,4 X2005,5 X2005,6 X2005,7 X2005,8 

X2006,1 X2006,2 X2006,3 X2006,4 X2006,5 X2006,6 X2006,7 X2006,8 

X2007,1 X2007,2 X2007,3 X2007,4 X2007,5 X2007,6 X2007,7 X2007,8 

X2008,1 X2008,2 X2008,3 X2008,4 X2008,5 X2008,6 X2008,7 X2008,8 

and similarly for the Y-variables.  To do the regression, create 9 time dummy variables: D2000, D2001, 
D2002, D2003, D2004, D2005, D2006, D2007, and D2008.  Then create 7 unit dummies, D2, D3, D4, D5, D6, 
D7, and D8.  Then regress the Y on X and these 16 dummy variables. 

Then the interpretation of the coefficient on the X variable is the amount by which an increase in X, 
above its usual value for that unit and above the usual amount for a given year, would increase Y. 

One drawback of this type of estimation is that it is not very useful for forecasting, either to try to 
figure out the sales at some new location or what will be sales overall next year – since we don't know either 
the new location's fixed effect (the coefficient on D9 or its alpha) or we don't know next year's dummy 
coefficient (on D2009 or its gamma).  

We also cannot put in a variable that varies only on one dimension – for example, we can't add any 
other information about store location that doesn't vary over time, like its distance from the other stores or 
other location information.  All of that variation is swept up in the firm-level fixed effect.  Similarly we can't 
include macro data that doesn't vary across firm locations like US GDP since all of that variation is collected 
into the time dummies. 

You can get much fancier; there is a whole econometric literature on panel data estimation methods.  
But simple fixed effects, put into the same OLS regression that we've become accustomed to, can actually 
get you far. 



Multi-Level Modeling 

After Fixed Effects, we can generalize to Multi-Level Modeling (much of my explanation is based on the excellent book, 

Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman & Jennifer Hill).  From the wage regressions based on 
CPS data that we were using, we can consider adding information about the person's occupation (the data 
gives a rough grouping of people into about 20 occupations).  You've probably done a version of this 
regression in your head, if you've ever read someone's job title and tried to figure out how much she makes. 

There are a few ways to use the occupation data.  One way is to ignore it, to not use it – which is what 
we were doing when we left it out of the regression.  Everyone started from the same value.  Gelman & Hill 
call this the "pooling" estimator since it pools everyone together.  Another way would be to put in fixed 
effects for each occupation, letting each vary as needed – every occupation has a different intercept term, 
starting from a different value.  This is "no-pooling."  This puts no constraints at all on what the intercepts 
might be – some high, some low, some way far afield.  A multilevel model imposes a model on how those 
intercepts vary: usually that they have a normal distribution with a central mean and variance.  The math to 
define the estimator gets a bit more complicated, but we let the computer worry about that.  But it's basically 
a weighted average of the "pooled" and "no-pooled" estimates, where the number of people reporting being 
in that particular group give the weights.  So groups with a lot of members get nearly that "no-pooled" 
estimate, while a group with few members would be estimated to be like the larger group. 

So in this example, the pooling case has wages of person i in industry j explained as 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼 + 𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 +
𝑒𝑒𝑖𝑖,𝑗𝑗  (where the X includes all the rest of the variables, lumped together).  The no-pooling case has 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼𝑗𝑗 +
𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗  so the intercept varies by industry, j.  The multilevel case has 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼0 + 𝛼𝛼[𝑗𝑗] + 𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗  but 
𝛼𝛼[𝑗𝑗]~𝑁𝑁(0,𝜎𝜎𝛼𝛼). 

With just a single level (like Occupation) this doesn't seem like a big thing, but if we want to define a 
lot of levels (Occupation, Industry, State or even City) then this gets more important.  Instead of estimating a 
separate parameter for each level, we can estimate just overall parameters – and levels with only a small 
number of observations will be partially pooled. 

Once we decide we want to do such a thing, the remaining question is, "how?"  With R it's easy, just 
lmer() instead of lm().   
 
modelmm1 <- lmer(WSAL_VAL ~ as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 
summary(modelmm1) 
 
modelmm2 <- lmer(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
               + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv  
               + married + divwidsep + union_m + veteran + immigrant + immig2gen 
              + as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 
summary(modelmm2) 

In these cases we can compute the Intra-Class Correlation (ICC) which is the ratio of the variance in the 
groups (𝜎𝜎𝛼𝛼) to the total variance, so 𝜎𝜎𝛼𝛼

𝜎𝜎𝛼𝛼+𝜎𝜎𝜖𝜖
.  Kind of like R2, this goes from zero to one and is graded on a curve.  

It tells how important the within-group variation is, relative to the total variation.  

Of course the next step would be to expand these coefficient estimates to be for slope as well as 
intercept – something like 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼0 + 𝛼𝛼[𝑗𝑗] + �𝛽𝛽0 + 𝛽𝛽[𝑗𝑗]�𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗.  Multilevel modeling is a growing trend 
within econometrics. 
 
 



 

 
 

  



# cps_1.R 
# looking at CPS 2013 data 
# uses file from dataferret download of CPS March 2013 supplement, 
downloaded June 12 2014 
# accompanying lecture notes for KFoster class ECO B2000 in fall 2014 at 
CCNY 
 
rm(list = ls(all = TRUE)) 
setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 
load("cps_mar2013.RData") 
 
attach(dat_CPSMar2013) 
# use prime-age,fulltime, yearround workers 
use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 
dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 
 
detach(dat_CPSMar2013) 
 
attach(dat_use) # just prime-age,fulltime, yearround workers 
 
# always a good idea to get basic stats of all of the variables in your 
regression to see if they make sense 
summary(WSAL_VAL) 
summary(Age) 
summary(female) 
summary(AfAm) 
summary(Asian) 
summary(Amindian) 
summary(race_oth) 
summary(Hispanic) 
summary(educ_hs) 
summary(educ_smcoll) 
summary(educ_as) 
summary(educ_bach) 
summary(educ_adv) 
summary(married) 
summary(divwidsep) 
summary(union_m) 
summary(veteran) 
summary(immigrant) 
summary(immig2gen) 
 
model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
 
summary(model1) 
coeftest(model1) 
#sometimes log form is preferred 
# dat_noZeroWage <- subset(dat_use,(WSAL_VAL > 0)) 
# model1a <- lm(log(WSAL_VAL) ~ Age + female + AfAm + Asian + Amindian + 
race_oth  
#              + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
#              + married + divwidsep + union_m + veteran + immigrant + 
immig2gen, data = dat_noZeroWage) 
# detach(dat_use) 
# attach(dat_noZeroWage) 
# log(mean(WSAL_VAL)) 
# mean(log(WSAL_VAL)) 
# detach(dat_noZeroWage) 



# attach(dat_use) 
# ^^ yes there are more elegant ways to do that, avoiding attach/detach - 
find them! 
 
# for heteroskedasticity consistent errors 
require(sandwich) 
require(lmtest) 
 
coeftest(model1,vcovHC) 
 
# jam nonlinear into linear regression 
model2 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 
race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
 
model3 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + I(female*Age) + 
I(female*(Age^2)) + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen) 
# could do this with "update" function instead 
summary(model2) 
summary(model3) 
# the ANOVA function is flexible - can compare nested models 
anova(model1,model2,model3) 
 
# Applied Econometrics in R suggests also spline and kernel estimators, we 
might get to that later 
 
# subset in order to plot... 
NNobs <- length(WSAL_VAL) 
set.seed(12345) # just so you can replicate and get same "random" choices 
graph_obs <- (runif(NNobs) < 0.1) # so something like 4000 obs 
dat_graph <-subset(dat_use,graph_obs)   
 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), data = dat_graph) 
# ^^ that looks like crap since Wages are soooooooo skew!  So try to find 
ylim = c(0, ??) 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), ylim = c(0,150000), data = dat_graph) 
 
# to plot the predicted values might want to do something like, 
lines(fitted.values(model2) ~ Age) 
# but that will plot ALLLLL the values, which is 4500 too many and looks 
awful 
# so back to this, 
to_be_predicted2 <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 0, 
Amindian = 1, race_oth = 1,  
                              Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                              married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted2$yhat <- predict(model2, newdata = to_be_predicted2) 
 
lines(yhat ~ Age, data = to_be_predicted2) 
 
# now compare model3 



to_be_predicted3m <- data.frame(Age = 25:55, female = 0, AfAm = 0, Asian = 
0, Amindian = 1, race_oth = 1,  
                               Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                               married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted3m$yhat <- predict(model3, newdata = to_be_predicted3m) 
 
to_be_predicted3f <- data.frame(Age = 25:55, female = 1, AfAm = 0, Asian = 
0, Amindian = 1, race_oth = 1,  
                                Hispanic = 1, educ_hs = 0, educ_smcoll = 0, 
educ_as = 0, educ_bach = 1, educ_adv = 0, 
                                married = 0, divwidsep =0, union_m = 0, 
veteran = 0, immigrant = 0, immig2gen = 1) 
to_be_predicted3f$yhat <- predict(model3, newdata = to_be_predicted3f) 
 
plot(WSAL_VAL ~ jitter(Age, factor = 2), pch = 16, col = rgb(0.5, 0.5, 0.5, 
alpha = 0.02), ylim = c(0,150000), xlab = "Age", data = dat_graph) 
lines(yhat ~ Age, data = to_be_predicted3f) 
lines(yhat ~ Age, data = to_be_predicted3m, lty = 2) 
legend("topleft", c("male", "female"), lty = c(2,1), bty = "n") 
 
det_ind <- as.factor(A_DTIND) 
det_occ <- as.factor(A_DTOCC) 
 
model4 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 
race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen 
             + det_ind + det_occ) 
summary(model4) 
 
# and always remember this part... 
detach(dat_use) 
 

 
# cps_2.R 
# looking at CPS 2013 data 
# uses file from dataferret download of CPS March 2013 supplement, 
downloaded June 12 2014 
# accompanying lecture notes for KFoster class ECO B2000 in fall 2014 at 
CCNY 
 
rm(list = ls(all = TRUE)) 
setwd("C:\\Users\\Kevin\\Documents\\CCNY\\data for classes\\CPS_Mar2013") 
load("cps_mar2013.RData") 
 
attach(dat_CPSMar2013) 
# use prime-age,fulltime, yearround workers 
use_varb <- (Age >= 25) & (Age <= 55) & work_fullt & work_50wks 
dat_use <- subset(dat_CPSMar2013,use_varb) # 47,550 out of 202,634 obs 
 
detach(dat_CPSMar2013) 
 
# create a single index variable (factor) from education dummies 
# educ_indx <- as.factor(educ_nohs + 2*educ_hs + 3*educ_smcoll + 4*educ_as + 
5*educ_bach + 6*educ_adv) 
# levels(educ_indx)[1] <- "No HS" 
# levels(educ_indx)[2] <- "HS" 
# levels(educ_indx)[3] <- "Some Coll" 
# levels(educ_indx)[4] <- "AS" 



# levels(educ_indx)[5] <- "Bach" 
# levels(educ_indx)[6] <- "Adv Deg" 
# levels(educ_indx) 
 
attach(dat_use) # just prime-age,fulltime, yearround workers 
# will look at some info by industry so look how wage varies by ind: 
by(WSAL_VAL, A_DTOCC, summary) 
plot(as.factor(female) ~ A_DTOCC) 
 
detach(dat_use) 
# A_DTOCC values: 
# 1 'Management occupations'  
# 2 'Business and financial operations occupations'  
# 3 'Computer and mathematical science occupations'  
# 4 'Architecture and engineering occupations'  
# 5 'Life, physical, and social service occupations'  
# 6 'Community and social service occupations'  
# 7 'Legal occupations'  
# 8 'Education, training, and library occupations'  
# 9 'Arts, design, entertainment, sports, and media occupations'  
# 10 'Healthcare practitioner and technical occupations'  
# 11 'Healthcare support occupations'  
# 12 'Protective service occupations'  
# 13 'Food preparation and serving related occupations'  
# 14 'Building and grounds cleaning and maintenance occupations'  
# 15 'Personal care and service occupations'  
# 16 'Sales and related occupations'  
# 17 'Office and administrative support occupations'  
# 18 'Farming, fishing, and forestry occupations'  
# 19 'Construction and extraction occupations'  
# 20 'Installation, maintenance, and repair occupations'  
# 21 'Production occupations'  
# 22 'Transportation and material moving occupations'  
# 23 'Armed Forces'  
 
 
 
# for heteroskedasticity consistent errors 
require(sandwich) 
require(lmtest) 
 
 
model1 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen,  data = dat_use) 
summary(model1) 
coeftest(model1,vcovHC) 
 
# can do it wrong... 
model1wrong <- lm(WSAL_VAL ~ educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv,  data = dat_use) 
summary(model1wrong) 
model2wrong <- lm(WSAL_VAL ~ educ_nohs + educ_hs + educ_smcoll + educ_as + 
educ_bach + educ_adv,  data = dat_use) 
summary(model2wrong) 
model3wrong <- lm(WSAL_VAL ~ educ_hs + educ_bach,  data = dat_use) 
summary(model3wrong) 
# model1 leaves out varbs;  
# model2 creates perfect multicollinearity with too many dummies;  
# model3 has too few dummies 
 



# example with Age 
model_continuousAge <- lm(WSAL_VAL ~ Age,  data = dat_use) 
summary(model_continuousAge) 
Age_factr <- cut(dat_use$Age,breaks=25:55) 
model_factrAge <-lm(WSAL_VAL ~ Age_factr,  data = dat_use) 
summary(model_factrAge) 
plot(coef(model_factrAge)) 
 
model2 <- lm(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
             + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
             + married + divwidsep + union_m + veteran + immigrant + 
immig2gen 
             + as.factor(A_DTOCC), data = dat_use) 
summary(model2) 
coeftest(model2,vcovHC) 
 
require(lme4) 
# next use multilevel based on industry A_DTOCC 
modelmm1 <- lmer(WSAL_VAL ~ as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), 
dat_use) 
summary(modelmm1) 
 
modelmm2 <- lmer(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + 
race_oth  
               + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv  
               + married + divwidsep + union_m + veteran + immigrant + 
immig2gen 
              + as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 
summary(modelmm2) 

 
  



Instrumental Variables  

• Endogenous vs. Exogenous variables 

o Exogenous variables are generated from "exo" outside of the model; endogenous are 
generated from "endo" within the model.  Of course this neat binary distinction rarely is matched by 
the world; some variables are more endogenous than others 

• Data can only demonstrate correlations – we need theory to get to causation.  "Correlation 
does not imply causation."  Roosters don't make the sun rise.  Although Granger Causation from the logical 
inverse: not-correlate implies not-cause.  If knowledge of variable X does not help predict Y, then X does not 
cause Y. 

• In any regression, the variables on the right-hand side should be exogenous while the left-hand 
side should be endogenous, so X causes Y, X Y→ .  But we should always ask if it might be plausible for Y to 
cause X, Y X→ , or for both X and Y to be caused by some external factor.  If we have a circular chain of 
causation (so X Y→  and Y X→ ) then the OLS estimates are meaningless for describing causation.  (So 
often need to watch dates – if the X variables are date (t-1) while Y is date t, then the causation is clearer than 
if all are dated t.)  Example: oil prices and economic growth – high oil prices can choke off growth, but lower 
growth means less demand so lower oil prices. 

• NEVER regress Price on a Quantity or vice versa! 

Why never regress Price on Quantity?  Wouldn't this give us a demand curve?  Or, would it give us a 
supply curve?  Why would we expect to see one and not the other? 

In actuality, we don't observe either supply curves or demand curves.  We only observe the values of 
price and quantity where the two intersect. 

If both vary randomly then we will not observe a supply or a demand curve.  We will just observe a 
cloud of random points. 

For example, theory says we see this: 

 

But in the world, we assume the dotted-lines and only actually observe the one intersection, the dot: 

Q 

P 



 

In the next time period, supply and demand shift randomly (well, for some reason we don't know, so 
it's random to us) by a bit, so theory tells us that we now have: 

 

But again we actually now see just two points, 
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In the third period, 

 

but again, in actuality just three points: 
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So if we tried to draw a regression line on these three points, we might convince ourselves that we had 
a supply curve.  But do we, really?  You should be able to re-draw the lines to show that we could have a 
down-sloping line, or a line with just about any other slope. 

So even if we could wait until the end of time and see an infinite number of such points, we'd still 
never know anything about supply and demand.  This is the problem of endogeneity.  The regression is not 
identified – we could get more and more information but still never learn anything. 

We could show this in an Excel sheet or little R program, too, which will allow a few more repetitions. 

Recall that we can write a demand curve as Pd = A – BQd and a supply curve as Ps = C + DQs, where 
generally A, B, C, and D are all positive real numbers.  In equilibrium Pd=Ps and Qd=Qs.  For simplicity assume 
that A=10, C=0, and B=D=1.  Without any randomness this would be a boring equation; solve to find 10 – Q = 
Q and Q*=5, P*=5.  (You did this in Econ 101 when you were a baby!)  If there were a bit of randomness then 

we could write d d dP A BQ ε= − +  and s s sP C DQ ε= + + .  Now the equilibrium conditions tell that 

10 d sQ Qε ε− + = +  and so 
( )* 10 5

2 2
d sd sQ
ε εε ε −+ −

= = +  and * 5 5
2 2

d s d s
sP ε ε ε εε− +

= + + = + . 

Plug this into Excel, assuming the two errors are normally distributed with mean zero and standard 
deviation of one, and find that the scatter looks like this (with 30 observations): 

Q 

P 

. . . 



 

You can play with the spreadsheet, hit F9 to recalculate the errors, and see that there is no 
convergence, there is nothing to be learned. 

On the other hand, what if the supply errors were smaller than the demand errors, for example by a 
factor of 4?  Then we would see something like this: 

 

So now with the supply curve pinned down (relatively) we can begin to see it emerge as the demand 
curve varies. 
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But note the rather odd feature: variation in demand is what identifies the supply curve; variation in 
supply would likewise identify the demand curve.  If some of that demand error were observed then that 
would help identify the supply curve, or vice versa.  So sometimes in agricultural data we would use weather 
variation (that affects the supply of a commodity) to help identify demand. 

If you want to get a bit crazier, experiment if the slope terms have errors as well (so 

( ) ( )d a b dP A B Qε ε= + − +  and ( ) ( )s c D sP C D Qε ε= + + + ). 

Check Hal Varian http://www.pnas.org/content/113/27/7310.long 

Instrumental Variables Regression 

The basic idea of instrumental variables is that if we have some regression, 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀, 

But X and Y are endogenous, then suppose we had some variable Z, which is uncorrelated with Y but 
still explains X, then we can make a supplementary regression, 

𝑋𝑋 = 𝛾𝛾0 + 𝛾𝛾1𝑍𝑍 + 𝑢𝑢, 

And get 𝑋𝑋�, the predicted values from that regression, then do the original regression as 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋� + 𝜀𝜀,. 
 

• valid instrument, some iZ  for regression 0 1 1
ˆ ˆ

i i iY X uβ β= + +  

o relevance: ( ), 0i icorr Z X ≠  and 

o exogeneity: ( ), 0i icorr Z u =  

o instrument explains X but NOT Y – can be excluded from list of variables explaining Y 
• Two-Stage Least Squares (TSLS or 2SLS) 

o 0 1i i iX Z vπ π= + + , 0 1i i iY X uβ β= + +  

o get   
0 1i iX Zπ π= +  and regress iY  on  iX  

o 1̂
ZY

ZX

s
s

β =  

• General Case: 

o 0 1 1 2 2

1 1 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
i i i k ki

k i k i k r ri i

Y X X X

W W W u

β β β β

β β β+ + +

= + + + +

+ + + + +




 

o X are endogenous regressors 
o W are exogenous regressors 

o 1 2, ,i i miZ Z Z  are instruments 
o if m>k then "overidentified"; if m=k then just identified; if m<k then unidentified 
o still need: 

 ( )1 2, , 0i i i riE u W W W =  

 X, W, Z are all i.i.d. with fourth moments 
 W not perfectly collinear 

http://www.pnas.org/content/113/27/7310.long


 Instrument Relevance and Exogeneity 
• Two-Stage Least Squares: 

o regress X on Z to get X̂  
o then regress Y on W and X̂  

• Evaluating Instruments in the Real World 
o Weak instruments: check first-stage regression F-stat bigger than 10? 
o Examples: 

 cigarette tax to find effect of price 
 prison capacity in place of jail terms 
 random variation in births for class size 
 geography for heart attack treatment 
 number of immigrants 10 years ago for immigrant increase 
 Mariel boatlift, other policy shifts 
 deployment of police after 9/11 to estimate effects of police on crime 

o Bad examples of poor instruments: 
 weak instrument: month of birth on wage earnings 

o Many bad examples where instruments needed: 
 wage explained by schooling 
 health insurance explained by wage 
 wage explained by weight (discrimination against fat people?) vs wage explained by 

race/ethnicity (discrimination against minorities) 
• Heckman 2-step for 2-part questions: first, "yes or no?"; next "how much?"  Like 2SLS but first stage is 

a probit (we'll do that later)!  Again need an exclusion restriction, some variable that explains the first 
step but not the second. 

 

Instrumental Variables Regression in R 

There was a paper in the journal Economic Inquiry, by Cesur & Kelly (2013), "Who Pays the Bar Tab? 
Beer Consumption and Economic Growth in the United States," which concluded that beer consumption was 
bad for economic growth.  I got data from the Brewer’s Almanac, provided online by the Beer Institute 
(beerinstitute.org) and the Bureau of Economic Analysis (bea.gov).  This is not quite the same data that the 
paper used (less complete) but it gives a flavor (bad pun) of the results. 

You can download the R data from the class webpage.  Then run this regression, 
regression1 <- lm(growth_rates ~ beer_pc + gdp_L + as.factor(st_fixedeff)) 
summary(regression1) 

Where the growth rate of each state’s GDP is a function of per-capita beer consumption, a lag of state 
GDP (reflecting the general idea that poorer states might grow faster), as well as state fixed effects (each 
state has its own intercept).  This shows a positive and statistically significant coefficient on per-capita beer 
consumption.  So beer is good for growth?!   

As Homer Simpson put it, "To alcohol! The cause of – and solution to – all of life's problems." That 
circularity of causation makes the statistics more complicated. 



 

Richer people have more money to buy everything including beer, so economic growth might cause 
beer consumption.  One way out, suggested by the article authors, is to use an instrument for beer 
consumption – the tax on beer.  This is a plausible instrument since it likely causes changes in beer 
consumption (higher price, lower consumption, y’know the demand curve) but it unlikely to be affected by 
economic growth.  So estimate an instrumental variables equation, 
iv_reg1 <- lm(beer_pc ~ beertax) 
summary(iv_reg1) 

And see that indeed there is a negative coefficient (hooray for demand curves!) although it is certainly 
a weak instrument (R2 less than 1%).  Use the predicted value of beer consumption per capita as an 
instrument in the regression in place of the endogenous variable, 
pred_beer <- predict(iv_reg1) 
iv_reg2 <- lm(growth_rates ~ pred_beer + gdp_L + as.factor(st_fixedeff)) 
summary(iv_reg2) 

To note that now beer consumption seems to have negative effects on economic growth (only 
significant at 10% level; the article adds some other variables to get it significant1).  I put some other variables 
in the dataset that you might play with – see if you can find the opposite result!  (R code from a simple summary at 
http://www.r-bloggers.com/a-simple-instrumental-variables-problem/) 

Finally note that you can use the AER package and ivreg() procedure for better results, since these 
estimated standard errors won’t be quite right – but that’s just fine-tuning. 

Measuring Discrimination – Oaxaca Decompositions: 

(much of this discussion is based on Chapter 10 of George Borjas' textbook on Labor Economics) 

 
1 Actually the published article uses the real level of beer tax, so they divide by the state-level CPI.  IMHO that makes it a poor 
instrument since there is no reason to think that price level is exogenous with GDP - in fact there are centuries of economists back 
at least to Adam Smith saying that price level and incomes are closely related! But that's just my opinion, clearly other people 
believe otherwise. 



The regressions that we've been using measured the returns to education, age, and other factors upon 
the wage.  If we classify people into different groups, distinguished by race, ethnicity, gender, age, or other 
categories, we can measure the difference in wages earned.  There are many explanations but we want to 
determine how much is due to discrimination and how much due to different characteristics (chosen or 
given). 

Consider a simple model where we examine the native/immigrant wage gap, and so measure Nw , the 

average wages that natives get, and Mw , the average wages that immigrants get.  The simple measure, 

N Mw w− , of the wage gap, would not be adequate if natives and migrants differ in other ways, as well. 

Consider the effect of age.  Theory implies that people choose to migrate early in life, so we might 
expect to see age differences between the groups.  And of course age influences the wage.  If natives and 
immigrants had different average wages solely because of having different average ages, we would conclude 
very different reasons for this than if the two groups had identical ages but different wages. 

For example, in a toy-sized 1000-observation subset of CPS March 2005 data, there are 406 natives 
and 77 immigrants workers with non-zero wages. The natives averaged wage/salary of $37,521 while the 
immigrants had $32,507.  The average age of the natives was 39.5; the average age of the immigrants was 
42.1.  We want to know how much of the difference in wage can be explained by the difference in age. 

Consider a simple model that posits different simple regressions for natives and immigrants: 

0, 1,N N Nw Ageβ β ε= + +  

 0, 1,M M Mw Ageδ δ ε= + + . 

We know that average wages for natives depend on average age of natives, NAge : 

 0, 1,N N N Nw Ageβ β= +  

and for immigrants as well, wages depend on immigrants' average age, MAge : 

 0, 1,M M M Mw Ageδ δ= + . 

The difference in average wages is: 

 ( ) ( )0, 1, 0, 1,N M N N N M M Mw w Age Ageβ β δ δ− = + − +  

but we can add and subtract the cross term, , 1,M NAgeδ  to get: 

 ( ) ( ) ( )0, 0, 1, 1, 1,N M N M N M N M N Mw w Age Age Ageβ δ β δ δ− = − + − + − . 



Each term can be interpreted in different ways.  The first difference, ( )0, 0,N Mβ δ− , is the difference in 

intercepts, the parallel shift of wages for all ages.  The second, ( )1, 1,N M NAgeβ δ− , is the difference in how the 
skills are rewarded: if everyone in the data were to have the same age, immigrants and natives would still 

have different wages due to these first two factors.  The third is ( )1,M N MAge Ageδ − , which gives the 
difference in wage attributable only to differences in average age (even if those were rewarded equally).  The 
first two are generally regarded as due to discrimination while the last is not. 

The basic framework can be extended to other observable differences: in years of education, 
experience, or the host of other qualifications that affect people's wages and salaries.  

From our discussions of regression models, we realize that the two equations above could be 

combined into a single framework.  If we define an immigrant dummy variable as iM , which is equal to one if 
individual i is an immigrant and zero if that person is native born, we can write a regression model as: 

 0 1 2 3i i i i i iw Age M M Ageβ β β β ε= + + + + , 

where wages for natives depend on only 0β  and 1β , while the immigrant coefficients are 

0, 0 2Mδ β β= +  and 1, 1 3Mδ β β= +  .  We construct 0 1
ˆ ˆ

N Nw Ageβ β= +  and ( )0 2 1 3
ˆ ˆ ˆ ˆ

M Mw Ageβ β β β= + + +  so the 

Oaxaca decomposition is now: 

 ( )( )2 3 1 3N M N N Mw w Age Age Ageβ β β β− = − − + + − . 

We note that unobserved differences in quality of skills can be measured as instead being due to 
discrimination.  In our example, suppose that natives get a greater salary as they age due to the skills which 
they amass, but immigrants who have language difficulties learn new skills more slowly.  In this case, older 
natives would earn more, increasing the returns to aging.  This would be reflected as lower coefficients on age 
for immigrants than natives, and so evidence of discrimination.  If we had information on English-language 
ability (SAT, TOEFL or GRE scores, maybe?), then the regression would show that a lack of those skills led to 
lower wages – no longer would it be measured as evidence of discrimination. 

But this elides the question of how people gain the "skills" measured in the first place.  If a degree from 
a foreign university gets less reward than a degree from an American university, is this entirely due to 
discrimination?  What fraction of the wage differential arises from skill differences?  In the US, African-
American and Hispanic children tend to go to lower-quality schools (as measured by test scores or teacher 
qualifications).  The lower subsequent wages might not be due to labor market discrimination (if firms 
rationally pay less for lower skills) but still be due to societal discrimination. 

Consider the sort of dataset that we've been working with.  Regressing Age, an Immigrant dummy, 
and an Age-Immigrant interaction on Wage provides the following coefficient estimates (for the same sub-
sample as before): 

 7437 762.62 20,663.29 658.06i i i i i iw Age M Age M ε= + + − +  



where the immigrant dummy is actually positive (neither the immigrant dummy nor the immigrant-
age interaction term are statistically significant, but I ignore that for now).  With the average ages from above 
(natives 39.5 years old; immigrants 42.1), we calculate the gap in average predicted wages (natives are 
predicted to make an average wage of $37,561; immigrants to make $32,502) is $5058.08.  The two first terms 

in the Oaxaca decomposition, relating to unexplained factors such as "discrimination" 2 3
ˆ ˆ

NAgeβ β− −  account 
for $5329.95, while the difference in age accounts for just -$271.86 (a negative amount) – this means that the 
ages actually imply that natives and immigrants ought to be closer in wages so they are even farther apart.  
We might reasonably believe that much of this difference reflects omitted factors (and could list out the 
important omitted factors); this is intended merely as an exercise. 

Adding these additional variables is easy; I show the case for two variables but the model can be 
extended to as many variables as are of interest.  Next consider a more complicated model, where now wages 
depend on Age and Education, so the two regressions for natives and immigrants are: 

0, 1, 2,N N N Nw Age Educβ β β ε= + + +  

 0, 1, 2,M M M Mw Age Educδ δ δ ε= + + + . 

We know that average wages for natives depend on average age and education of natives, 

,N NAge Educ : 

 0, 1, 2,N N N N Nw Age Educβ β β= + +  

and for immigrants as well, wages depend on immigrants' average age, ,M MAge Educ : 

 0, 1, 2,M M M M Mw Age Educδ δ δ= + + . 

The difference in average wages is: 

 ( ) ( )0, 1, 2, 0, 1, 2,N M N N N N N M M M M Mw w Age Educ Age Educβ β β δ δ δ− = + + − + +  

but we can add and subtract the cross terms , 1, 2,M N M NAge Ageδ δ+  to get: 

 

( ) ( ) ( ) ( ) ( )0, 0, 1, 1, 1, 2, 2, 2,N M N M N M N M N M N M N M N Mw w Age Age Age Educ Educ Educβ δ β δ δ β δ δ− = − + − + − + − + −

. 

Again, the two terms showing the difference in average levels of external factors, ( )N MAge Age−  and 

( )N MEduc Educ− , are "explained" by the model while the other terms showing the difference in the 

coefficients are "unexplained" and could be considered as evidence of discrimination. 
Exercises: 
1. Do the above analysis on the current CPS data. 
2. If instead you used log wages, but still kept just age as the measured variable, is your answer substantially 

different than in the previous question? (Note that the answers are in different units, so you have to think about how to convert the 
two answers.) 



3. Consider other measures of skills, such as schooling and whatever other factors you consider important.  How 
does this new regression change the Oaxaca decomposition?  

4. What is the maximum fraction of wage difference that you can find (with different independent variables and 
regression specifications), related to discrimination?  The minimum? 

References: 

Borjas, George (2003).  Labor Economics. 

Oaxaca, Ronald (1973).  "Male-Female Wage Differentials in Urban Labor Markets," International 
Economic Review, 14(3). 
 

Binary Dependent Variable Models  

(Stock & Watson Chapter 9) 

• Sometimes our dependent variable is continuous, like a measurement of a person's income; 
sometimes it is just a "yes" or "no" answer to a simple question.  A "Yes/No" answer can be coded as just a 1 
(for Yes) or a 0 (a zero for "no").  These zero/one variables are called dummy variables or binary variables.  
Sometimes the dependent variable can have a range of discrete values ("How many children do you have?"  
"Which train do you take to work?") – in this case we have a discrete variable.  The binary and continuous 
variables can be seen as opposite ends of a spectrum. 

• We want to explore models where our dependent variable takes on discrete values; we'll start 
with just binary variables.  For example, we might want to ask what factors influence a person to go to 
college, to have health insurance, or to look for a job; to have a credit card or get a mortgage; what factors 
influence a firm to go bankrupt; etc. 

• Linear Models such as OLS have some problems.  These imply predicted values of Y that are 
greater than one or less than zero. They also have advantages! You should be able to do both 
http://marcfbellemare.com/wordpress/8951  

• Interpret our prediction of Y as being the probability that the Y variable will take a value of one.  
(Note: remember which value codes to one and which to zero – there is no necessary reason, for example, for us to code Y=1 if a 
person has health insurance; we could just as easily define Y=1 if a person is uninsured.  The mathematics doesn't change but the 
interpretation does!) 

• want to somehow "bend" the predicted Y-value so that the prediction of Y never goes above 1 
or below zero, something like: 

 

Y 
1 
 
 
 
0 

X 
 

http://marcfbellemare.com/wordpress/8951


• Probit Model 

o ( ) ( )0 1 1 2 2Pr 1Y X X Xβ β β= = Φ + +  where ( )Φ   is the cdf of the standard normal 

o Pr
X

∆
∆

 is not constant 

• Logit Model 

o ( ) ( )0 1 1 2 2Pr 1Y X F X Xβ β β= = + + , where ( ) 1
1 zF z

e−=
+

 

o Pr
X

∆
∆

 is not constant 

• differences (Excel sheet:compare_probit_logit.xls) 

Clearly the differences are rather small; it is rare that we might have a serious theoretical justification 
for one specification rather than the other. 

 

(Note that the logit function given above has standard error of 3
π

 so in the plots I scaled the probit by this factor). 
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• Measures of Fit 

o no single measure is adequate; many have been proposed 

o What probability should be used as "hit"?  If the model says there is a 90% chance of 
Y=1, and it truly is equal to one, then that is reasonable to count as a correct prediction.  But many 
measures use 50% as the cutoff.  Tradeoff of false positives versus false negatives – loss function 
might well be asymmetric.   

 actually = 1 actually = 0 
Predicted = 1 Hooray! sad 
Predicted = 0 sad (maybe sadder?) Hooray! 

 

Probit/Logit in R 

For a logit estimation, just 

regn_logit1 <- glm(Y ~ X1 + X2, family = binomial, data = data1) 

for a probit estimation 

regn_probit1 <- glm(Y ~ X1 + X2, family = binomial (link = 'probit'), data = 
data1) 

 
Example with CPS data 

model_logit1 <- glm(health_ins ~ Age + I(Age^2) + female + AfAm + 
Asian + Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + 
educ_as + educ_bach + educ_adv + married + divwidsep + union_m + 
veteran + immigrant + immig2gen, family = binomial, data = 
dat_use_hi) 

summary(model_logit1) 

regn_probit1 <- glm(health_ins ~ Age + female + AfAm + Asian + 
Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + educ_as 
+ educ_bach + educ_adv + married + divwidsep + union_m + veteran 

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

CDF

Probit

Logit



+ immigrant + immig2gen, family = binomial (link = 'probit'), 
data = dat_use_hi) 

summary(regn_probit1) 

Then the estimation results from “summary()” should be familiar. The interpretation is also essentially unchanged: 
look at the individual t-statistics (formed by dividing coefficient estimates from standard errors) then get a p-value from 
that.  

In addition to looking at effects of particular X-variables, we are interested in looking at predictive accuracy – but note 
that this is likely to vary depending on your project so the results I'm going to show here are particular to this analysis.  
You would have to carefully take a look at your own model predictions. Also would want to check different sub-groups – 
is predictive accuracy substantially better or worse for particular groups? That might be a signal that the simple 
dummies are not adequately capturing the variation. 

 
summary(model_logit1$fitted) 
summary(dat_use_hi$health_ins) 
pred_model_logit1 <- (model_logit1$fitted > 0.5) 
table(pred_model_logit1, dat_use_hi$health_ins) 
frac_correct_l1a <- mean(as.numeric(as.numeric(pred_model_logit1) == 
dat_use_hi$health_ins)) 
 
pred_model_logit1b <- (model_logit1$fitted > mean(dat_use_hi$health_ins)) 
table(pred_model_logit1b, dat_use_hi$health_ins) 
frac_correct_l1b <- mean(as.numeric(as.numeric(pred_model_logit1b) == 
dat_use_hi$health_ins)) 
 
# examine how different cut-off values change predictive accuracy 
frac_correct_try <- rep(0,18) 
for (indx in 1:18) { 
  pred_model_indx <- (model_logit1$fitted > (indx/20)  ) 
  frac_correct_try[indx] <- mean(as.numeric(as.numeric(pred_model_indx) == 
dat_use_hi$health_ins)) 
} 
plot((seq(18)/20),frac_correct_try) 

 

Also note that the code as given treats either miss (whether actually true and predict false, or actually false and predict 
true) as equally bad.  In many applications this is not the case!  Depending on the purpose of the model, false negatives 
and false positives could have different costs.  

• Details of estimation 

• recall that OLS just gives a convenient formula for finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , kβ β β β  that minimize the sum 

( )( )
2

0 1 1 2 2
1

ˆ ˆ ˆ ˆ
n

i i i k ki
i

Y X X Xβ β β β
=

− + + + +∑  .  If we didn't know the formulas we could just have a computer pick 

values until it found the ones that made that squared term the smallest. 

• similarly a probit or logit coefficient estimates are finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , kβ β β β  that minimize 

( )( )
2

0 1 1 2 2
1

ˆ ˆ ˆ ˆ
n

i i i k ki
i

Y f X X Xβ β β β
=

− + + + +∑  , whether the ( )f   function is a normal c.d.f. or a logit c.d.f. 



• Maximum Likelihood (ML) is a more sophisticated way to find these coefficient estimates – better than just guessing 
randomly. 

• For example the likelihood of any particular value from a normal distribution is the p.d.f.,  

21
21

2

x

e
µ

σ

πσ

− −  
  .  If we have 

2 independent observations, 1 2,X X  from a distribution that is known to be normally distributed with variance of 1 (to 

keep the math easy) then the joint likelihood is 
( ) ( )2 2

1 2
1 1
2 21 1

2 2
X X

e e
µ µ

π π

− − − −
⋅ .  We want to find a value of µ that 

maximizes that function.  This is an ugly function but we could note that any value of µ that maximizes the natural log 

of that function will also maximize the function itself (since ( )ln   is monotonic) so we take logs to get 

( ) ( )2 2
1 2

1 1 1 1ln
2 22 2

X Xµ µ
π π

 
⋅ − − − − 

 
.  Take the derivative with respect to µ and set it equal to zero to get 

( ) ( )1 2 0X Xµ µ− + − =  so that ( )1 2

2
X X

µ
+

= .  You should be able to see that starting with n  observations would 

get us 
1

1 n

i
i

X X
n

µ
=

= =∑  so the average is also the maximum-likelihood estimator.  A maximum-likelihood estimator 

could be similarly derived in cases where we don't know the variance (interestingly, that ML estimator of the standard 
error divides by n not (n – 1) so it is biased but consistent). 

• Maximizing the likelihood of the probit model is one or two steps more complicated but not different conceptually.  
Having a likelihood function with a first and second derivative makes finding a maximum much easier than the random 
hunt. 

Properly Interpreting Coefficient Estimates: 

Since the slope, PrY
X X

∆ ∆
=

∆ ∆
, the change in probability per change in X-variable, is always changing, 

the simple coefficients of the linear model cannot be interpreted as the slope, as we did in the OLS model.  
(Just like when we added a squared term, the interpretation of the slope got more complicated.)   

Return to the picture to make this clearer: 

 

Y 
1 
 
 
 
0 X 

 X1        X2 
 

The slope at X1 is rather low; the slope at X2 is much steeper. 

The effect of the coefficients now interacts with all of the other variables in the model: for example 
the effect of a person's gender on their probability of having health insurance will depend on other factors like 
their age and educational level.  Women are generally less likely to have their own insurance than men, but 



how much less?  Among young people with very low education, neither men nor women are very likely to be 
insured; among older people with very high education both are very likely insured.  The biggest difference is 
toward the middle. 

For example, very simple logit and probit estimations on the CPS 2013 dataset (R program shows this 
in detail) gives the following coefficient estimates (I am suppressing notation on significance since it is not 
important here): 

 coefficient estimates 
 logit probit 

(Intercept) -0.37783 -0.2473 
Age 0.002625 0.002951 
I(Age^2) 0.000133 0.000057 
female -0.13458 -0.07423 
AfAm -0.49067 -0.2879 
Asian 0.295029 0.1695 
Amindian -0.68546 -0.4059 
race_oth -0.1998 -0.1172 
Hispanic -0.40528 -0.2429 
educ_hs 0.84353 0.5237 
educ_smcoll 1.215126 0.7426 
educ_as 1.54497 0.9321 
educ_bach 2.146008 1.254 
educ_adv 2.536002 1.444 
married 0.602157 0.3499 
divwidsep -0.16488 -0.09745 
union_m 1.407863 0.7217 
veteran -0.18023 -0.1157 
immigrant -0.68214 -0.3973 
immig2gen 0.071965 0.03768 

The probability of having health insurance varies for different socioeconomic groups.  We can 
interpret the signs in a straightforward way: the negative coefficients on the "female" variable indicate 
that women are less likely to have health insurance.  African-Americans are less likely, along with 
Hispanics and Native Americans.  Educational qualifications are positive and get larger. 

But how large are these differences?  For example, how much less likely to have health insurance 
are immigrants?  It depends on the other variables.  Intuitively, if a person is male, highly-educated, and 
married then he's probably insured (being an immigrant would him only slightly less so).  So the change in 
probability associated with immigrant status would be low.  At the opposite end, a woman without a high 
school diploma, who is single, is already be unlikely to be insured.  Immigrant status hardly changes this.  
Only in the middle will there be a big effect. 

We can calculate it straightforwardly, though. 

Consider, say, a 30-yr-old non-immigrant African-American woman with an advanced degree, 
whose predicted probability of having health insurance is  



= 𝑓𝑓

⎝

⎜
⎛

𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝛽𝛽3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 +
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𝛽𝛽9𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽10𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽11𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽12𝐸𝐸𝐸𝐸4 + 𝛽𝛽13𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
+𝛽𝛽14𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽15𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽16𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝛽𝛽17𝑉𝑉𝑉𝑉𝑉𝑉

+𝛽𝛽18𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽19𝐼𝐼𝐼𝐼𝐼𝐼2𝑔𝑔 + 𝑒𝑒 ⎠
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=𝑓𝑓 �

𝛽𝛽0 ∙ 1 + 𝛽𝛽1 ∙ 30 + 𝛽𝛽2 ∙ 302 + 𝛽𝛽3 ∙ 1 + 𝛽𝛽4 ∙ 1 + 0 + 0
+0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

+𝛽𝛽16 ∙ 0 + 𝛽𝛽17 ∙ 0 + 𝛽𝛽18 ∙ 0 + 𝛽𝛽19 ∙ 0 + 𝛽𝛽20 ∙ 0 + 𝛽𝛽13 ∙ 1
+0 …

� 

Summing the relevant coefficients (the intercept, female, and an advanced degree) gives a logit 
probability of  

=𝑓𝑓(−.378 + .079 + .120 − .135 − .491 + 2.536) 

= 1
1+𝑒𝑒−(−.378+.079+.120−.135−.491+2.536) 

Which is 85.0%.  For an otherwise-identical immigrant woman (also with an advanced degree) the 
probability is 0.74, so the change in probability is about 11 percentage points.   

Comparing the probit estimates, we would just change the functional form and use  the normal cdf 
instead of the logit function, so again from: 

=𝑓𝑓 �

𝛽𝛽0 ∙ 1 + 𝛽𝛽1 ∙ 30 + 𝛽𝛽2 ∙ 302 + 𝛽𝛽3 ∙ 1 + 𝛽𝛽4 ∙ 1 + 0 + 0
+0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

+𝛽𝛽16 ∙ 0 + 𝛽𝛽17 ∙ 0 + 𝛽𝛽18 ∙ 0 + 𝛽𝛽19 ∙ 0 + 𝛽𝛽20 ∙ 0 + 𝛽𝛽13 ∙ 1
+0 …

� 

=𝑓𝑓(−.247 + .089 + .051 − .074 − .288 + 1.444) 

=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(−.247 + .089 + .051 − .074 − .288 + 1.444) (in R) 

 and find a probability for a non-immigrant woman as 0.835 and the immigrant woman to be 0.718, 
with a difference of 11.7 percentage points.  These estimates from the logit and probit are very close. 

Compare the change in probabilities for a divorced 45-yr-old white male without any degree, who 
is either an immigrant or not.  Now the probability of having insurance is, by the logit, 0.461 for the non-
immigrant and 0.302 for the immigrant, a change of 15.9 percentage points.  From the probit the 
estimated probabilities are 0.462 for the non-immigrant and 0.311 for the immigrant, a change of 15.1 
percentage points.  This is because such a person is already less likely to have health insurance, so the 
difference of being an immigrant or not makes a bigger difference compared with the previous example. 

Other Specifications 
There are lots of other models that can be easily estimated – one of the advantages of R is that it makes it 
quite simple to use the same basic format of model specification but with different models. Some of these are 
just beginning to become more common in economics research. 
 
You might in the future hear someone tell you, "you should try the effin_magic procedure" – and these notes 
will go through a series of "effin_magic" options but there are always more! But the general procedure for 



whatever fancy effin_magic you're doing is to find a package in R that implements that effin_magic, split your 
data into training set and test set, do the effin_magic on the training set, then look at how it performs on the 
held-out test data. In time series, that test data might be going back a year to ask what if you had estimated a 
procedure from data up to last year then tried to predict one more year. In cross-section the selection of test 
data is often just random. But the basic idea is similar. There is often a tradeoff that an estimation can overfit 
the training set but then underfit the test set. (There are some procedures that use cross validation to do the 
same leave-some-out procedure on training data, to tune a parameter – it's turtles all the way down.) Much of 
the art comes from dealing with the curse of dimensionality. Now of course I encourage you to learn details of 
whatever effin_magic you're estimating, to read background literature on what other people have figured 
out, and as you gain experience you will get a better sense of which ones are likely to be best – but you can 
learn a lot by just trying them out. 

Quantile Regression 
If you recall our discussion of heteroskedasticity in things like the Age-Wage relationship, there is a well-
known tendency for younger workers to have more compressed earnings, which then fan out as people get 
older. 
 
For example, if we use the 2013 CPS data, we can look at people aged 25-55 who are working full time for 
most of the year and, even if we focus on a single educational group, for example those with a 4-year degree, 
we can see the spread here: 

 
So the median worker saw a steady rise in wage: 30-yr-olds made $50,000 while 50-yr-olds made about 
$65,000; but those in the 25th percentile went from $35,000 at age 30 to $40,000 by 50; those in the 75th 
percentile went from $66,000 to $93,000. 
 
One way to model these different results, for different percentiles, is with a quantile regression (mostly due 
to Roger Koenker), which uses a familiar regression framework to explain various percentiles. 
 
In R this couldn’t be easier: just use the “quantreg” package and call the rq() function instead of lm().  
(Note that it’s rq not qr; if you’ve done linear algebra you’ll recall the QR matrix decomposition.) 
 
p_tiles <- c(0.1, 0.25, 0.5, 0.75, 0.9) 



quantreg1 <- rq(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + 
race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + 
educ_adv + married + divwidsep + union_m + veteran + immigrant + 
immig2gen,  tau=p_tiles, data = dat_use) 

summary(quantreg1) 
plot(quantreg1) 
 
Details are in the R file, cps3.R.  This estimates age-wage profiles like this (for women with a 4-year degree): 

 
Which shows the spread. 

Non-Parametric Regression 
Instead of assuming a functional form – that the age-wage profile is linear, or quadratic, or cubic, or 

whatever … just let the data determine the wiggles in the function. 
Peek at the underlying data, this is pdf of wages earned by different ages (those with college degree 

aged 25, 30, 35…): 

 
Details in R program. 
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restrict2 <- as.logical(dat_use$educ_bach) 

data3 <- subset(dat_use, restrict2) 

NN <- length(data3$WSAL_VAL) 

restrict3 <- as.logical(round(runif(NN,min=0,max=0.75))) 

data4 <- subset(data3, restrict3) 

library(np) 

# note that this is rather computationally intensive! 

model_nonparametric1 <- npreg(WSAL_VAL ~ Age, regtype = "ll", bwmethod = 
"cv.aic", gradients = TRUE, data = data4) 

summary(model_nonparametric1) 

npsigtest(model_nonparametric1) 

plot(data4$Age,data4$WSAL_VAL, xlab = "age", ylab = "wage", cex=.1) 

lines(data4$Age, fitted(model_parametric1), lty = 2, col = "red") 

lines(data4$Age, fitted(model_nonparametric1), lty = 1, col = "blue") 
 

A linear regression gives the expected value of Y given the values of X, under restriction that this expected 
value is a linear function.  Quantile regression gives expected quantile of Y given X (again as a linear function).  
Nonparametric regression gives expected value of Y given X, subject to smoothness constraint (not linearity 
but still something). 

LOESS 
LOESS (local estimation with polynomials, not the kind of soil!) is related to nonparametric regression – 
where we think there is some smooth function y = f(x) but we want to estimate a very generic function, f( ).  
Unlike the nonparametric estimation previously it is much less computationally intensive (so runs much 
faster).  The main limitation for our purposes is that X can have at most 4 variables, which must all be 
continuous (applies to R not in general). 
model_loess1 <- loess(WSAL_VAL ~ Age,data3) 
y_loess1_pred <- predict(model_loess1, data.frame(Age = seq(25, 55, 1)), se 

= TRUE) 
plot(seq(25, 55, 1),y_loess1_pred$fit) 

 
If you're starting to enjoy this stuff, I can recommend the (oddly titled) text, Advanced Data Analysis from an 
Elementary Point of View, by Cosma Shalizi.  It is a terrific overview of these (and many more!) statistical 
techniques, with lots of examples in R, and great intuition for how the models work. 

Spline & Generalized Additive Models 
Again similar way of thinking of giving flexibility to functional form with tradeoff that more data and more 
computing power is needed. Estimate higher-order polynomials on sub-sections of the data, which come 
together at "knots". With one knot, this means cutting data into 2 subgroups; 3 knots gives 4 subgroups, etc. 
There are tuning parameters that control how many knots. (In R, the function smooth.spline with cv=TRUE.) 
Generalized Additive Models go farther along that route, allowing polynomials in various X variables; in R use 
the "gam" library. 



Propensity Score Models  
Again Gelman & Hill give a nice explanation.  Ordinarily we look at estimating dummy variable 

coefficients using the whole set of data, so we want to estimate the coefficient on D in the equation, 𝑦𝑦 =
𝑋𝑋𝑋𝑋 + 𝛾𝛾𝛾𝛾 + 𝜀𝜀 (where 𝑋𝑋𝑋𝑋 includes all of the rest of the model variables).  If the X variables are very similar for 
those with D=0 and D=1, then we are likely to get a good estimate of the effect of D (the 𝛾𝛾 coefficient).  But if 
the values of the of X variables are very different, between those with D=0 and those with D=1, then we need 
to be sure that the model is very accurate.   

As a simple example, consider again the sort of model we'd discussed about dummy variables – 
suppose we want to estimate something like this model, 

  
If the data for D=1 and D=0 are similar, then this can be well estimated: 

 

 
If, however, we consider how to use a point such as this one: 

 
Then what the model is essentially doing is using the estimate of β to shift that down to a comparable 

location then measuring the vertical distance, so: 
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But what if the estimate of β is a bit off?  What if, instead of a simple linear function like Xβ, we have 

some nonlinear part?  Or an interaction of X and D that is omitted?  In that case the new point might be just 
contributing noise. 

So a propensity score model would just compare D=1 values with those certain D=0 values that have 
X-values that are "close" – leaving out the X-values that are far away.  If X is uni-dimensional then defining 
"close" is pretty easy (as in the graph above) but if X has multiple dimensions then this becomes more difficult 
– recall our discussion of k-nearest-neighbor for machine learning! 

To do this in R, start with a logit model of the 'treatment' – which for this example is whether the 
person is female.  Then use this estimated distance to match. 

model1 <- glm(female ~ Age + I(Age^2) + AfAm + Asian + Amindian + race_oth  

+ Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv  

+ married + divwidsep + union_m + veteran + immigrant + immig2gen,  

family= binomial, data = dat_use) 

X_dist <- model1$fitted  

Y_est <- dat_use$WSAL_VAL 

tr_est <- dat_use$female 

 

require('Matching') 

# this is numerically intensive  

model_match <- Match(Y=Y_est, Tr=tr_est, X=X_dist, M=1, version='fast') 

summary(model_match) 

This estimates the female wage disadvantage to be -18776, compared to a linear regression model where the 
dummy variable gets an estimate of -19296, so not much of a difference in this case, although other 
situations might find a bigger difference in estimates. 
 Alternately we could consider education, which is a bit more of a "treatment" and look at the effect of 
getting an advanced degree compared with getting a bachelor's degree. 

use_varb2 <- as.logical(dat_use$educ_bach + dat_use$educ_adv) 

dat_use2 <- subset(dat_use,use_varb2) # 19231 obs 
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model2 <- glm(educ_adv ~ Age + I(Age^2) + female + AfAm + Asian + Amindian + 
race_oth + Hispanic + married + divwidsep + union_m + veteran + 
immigrant + immig2gen, family= binomial, data = dat_use2) 

X_dist <- model2$fitted  

Y_est <- dat_use2$WSAL_VAL 

tr_est <- dat_use2$educ_adv 

 

require('Matching') 

model_match2 <- Match(Y=Y_est, Tr=tr_est, X=X_dist, M=1, version='fast') 

summary(model_match2) 

 

modelcompare2 <- lm(WSAL_VAL ~ Age + I(Age^2) + female + AfAm + Asian + 
Amindian + race_oth + Hispanic + educ_adv + married + divwidsep + 
union_m + veteran + immigrant + immig2gen, data = dat_use2) 

summary(modelcompare2) 

 
Here's a good explanation, http://ftp.iza.org/dp1588.pdf 

Lasso 
Lasso (and Spike and Slab, below) are both used for selecting which variables are "important" in 

predicting.  Note as usual that important in prediction might not be the same as causal, however again we 
can explore the data to see.  Both techniques will pare off X-variables that do not contribute much predictive 
value to the regression.  In cases where we have very few observations (i.e. most of macro), these would not 
be appropriate, however in cases with dense data then it is reasonable to consider – if your variable of interest 
is not selected for prediction, then you have to think about why. 

Much of the impetus for developing these sorts of models comes from either websites (that get arrays of 
data streaming through, and try to figure out which have any predictive value) or genomics (which have huge 
numbers of candidate genetic markers, and try to figure out which have predictive value). 

Lasso is Least Absolute Shrinkage and Selection Operator, and in R is usually implemented with the 
lars package. 

This finds coefficients that not only minimize the squared residuals (just like OLS) but also tries to 
minimize the squared coefficient sizes – so it penalizes 'too many' explanatory variables.  In machine learning 
this is a way of finding efficient predictors but for our purposes it helps to see which variables are important in 
the model. 

It is useful to ensure that the X-variables are scaled similarly; this will do the trick. 
x_varb <- cbind(Age,I(Age^2), female, AfAm, Asian, Amindian,race_oth,  

Hispanic, educ_hs, educ_smcoll, educ_as, educ_bach, educ_adv,  
married, divwidsep, union_m, veteran, immigrant, immig2gen) 

stand_Z <- function(X) { 
  rval <- matrix(data = NA, nrow = nrow(X), ncol = ncol(X)) 
  for(j in 1:ncol(X)) rval[,j] <- (X[,j] - mean(X[,j]))/sd(X[,j]) 
  return(rval) 
  } 
x_varb_dm <- stand_Z(x_varb) 
dimnames(x_varb_dm) <- dimnames(x_varb) 
require(lars) 



model_lars <- lars(x_varb_dm,WSAL_VAL) 
summary(model_lars) 
plot(model_lars) 
coef(model_lars) 

 
We can get an idea of how it classifies the importance of the different factors from our basic wage 

regression, 
<insert examples of output here> 

Related to Lasso Regression is the Ridge Regression (for cases with near multicollinearity) and Elastic Net 
Regression (which combines them). Lasso might cut off too much so Elastic Net can give a bit more … 
elasticity. It is often important to regularize the x-variables so either get them to be mean-zero and stdev=1 
or to be on [0,1] interval. Try the glmnet package, so if its alpha parameter is set to zero you have ridge; if 
alpha is 1 then lasso; in between is elastic net. 

Spike & Slab 
 There are many other regression techniques.  
  

Spike and Slab (the name refers to the Bayesian prior distributions about coefficients) is implemented 
in R with the spikeslab package.  Scott and Varian (2012) refer to the "fat regression" problem where 
there are more possible explanatory variables than there are observations – there is a severe problem with 
degrees of freedom.  The "spike" refers to the probability that a particular variable is in the model (there is 
either a 0 or a 1 to select that particular explanatory variable) while the "slab" is the information from the 
coefficient estimates. (The LASSO estimator also approached this problem.)  

This is another way to gauge the importance of various parts of your model, particularly in cases if 
there are lots of interactions. 

A linear regression with a lot of interactions (returning to our usual CPS wage regression) could include 
this, 
modelcompare <- lm(WSAL_VAL ~ (Age + I(Age^2) + female + AfAm + Asian + 

Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + 
educ_bach + educ_adv + married + divwidsep + union_m + veteran + 
immigrant + immig2gen) ^2 + (industry_f + occupatn_f + 
state_f)*female, data = dat_8) 

summary(modelcompare) 

 Whereas a version with spike and slab would use this code, 
require(spikeslab) 
set.seed(54321) 
model1_spikeslab <- spikeslab(WSAL_VAL ~ (Age + I(Age^2) + female + AfAm + 

Asian + Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + 
educ_as + educ_bach + educ_adv + married + divwidsep + union_m + 
veteran + immigrant + immig2gen) ^2 + (industry_f + occupatn_f + 
state_f)*female,  data = dat_8) 

summary(model1_spikeslab) 
print(model1_spikeslab) 
plot(model1_spikeslab) 

Both will keep your computer running for a while!  Note the "set.seed" sets the random number generator so 
that, if you try it again, you'll get the same output as I did. 
 

The picture is tough to interpret given so many lines, 



 
Other than that there are only a few that really stand out.  The "print" call will give the coefficient estimates 
from this model; the top of that print is: 

---> Top variables:    
 bma gnet bma.scale gnet.scale 
Age:educ_adv 16690.17 17715.13 1123.054 1192.021 
Age:educ_bach 8792.73 11872.62 485.761 655.912 
Age 7020.34 7152.103 817.248 832.587 
occupatn_f17 -6143.29 -6595.35 -18991.2 -20388.7 
occupatn_f8 -5395.99 -5487.32 -23699.6 -24100.8 
occupatn_f10 4805.165 4645.705 20435.86 19757.69 
occupatn_f6 -4621.3 -4926.29 -33460.7 -35668.9 
occupatn_f21 -4546.55 -4899.63 -18791.1 -20250.4 
occupatn_f22 -4533.39 -4921.73 -19702.5 -21390.3 
female:occupatn_f10 -4424.35 -4457.37 -22250 -22416.1 

Where the "bma" (Bayesian Model Averaging) and "gnet" (the generalized elastic net, with penalty 
parameters for coefficients) refer to different estimation methods; the first two columns are coefficients for 
the normalized values of the x-variables (with mean 0 and std dev 1) while the last two columns are the usual 
coefficient estimates. 
 

From looking at the top ones most likely to be selected for inclusion in the model, we see that the first 
2 most important variables are age interacted with education measures, then age, then various occupation 
categories.  This is similar to the LASSO that implied that education was most important. 
 
(If you learn nothing else from this course, learn that the data show that education is important!  Although, you know, probably because people with 
more education actually learn and remember the s*** that their professors say…) 

Estimation with Trees and Forests 
 With Tree Models (from computer science) the emphasis is on prediction not necessarily causation.  
This can make economists crazy although it can also be a good way to get at causation – are there certain 
"features" (which is the term that computer science uses instead of 'explanatory variables') that can easily 
classify some outcome?  This can be part of a data description or modeling exercise. 



 A tree model gives a series of splits of the X-variables (which, just like the Y-variable, might be, but 
need not be, discrete) in order to subdivide and subdivide.  It's a good way of handling models where there 
are crazy degrees of interaction, where some regions of the X-variables imply very different Y-behaviors than 
other X-regions. 
 The tree is constructed by finding the split in an X-variable that most reduces the sum of squared 
errors in each stem of the tree (if Y is continuous).  Since we have been talking about "sum of squared errors" 
since OLS models, this should be reassuring to you. 
 An R program to predict whether a person is covered by employer-provided health insurance is: 
library('rpart') 
# tree model of whether has health insurance 
model1 <- rpart(health_ins ~ Age + I(Age^2) + female + AfAm + Asian + 

Amindian + race_oth + Hispanic + educ_hs + educ_smcoll + educ_as + 
educ_bach + educ_adv + married + divwidsep + union_m + veteran + 
immigrant + immig2gen,data = dat_use_hi, method = "class") 

summary(model1) 
# plot(model1) 
# text(model1, use.n = TRUE, all=TRUE, cex=.8) 
post(model1, file = "tree_1.ps", 
     title = "Classification Tree for Health Insurance") 

Note that since the y-variable is 0/1, it uses "method = "class", whereas if the y-variable were continuous 
it would use "method = "anova". 

 
We could improve this method by going back to the idea that we discussed with k-nn, where we split 

into training and evaluation sets – use 80% of the data to train the tree, then see how well it would classify the 
remaining 20%.  This helps if you worry about overfitting.  There are other methods of pruning trees to keep 
them from growing too much. 

But note that this demolishes the idea of "statistical significance".  Various econometricians have 
developed methods that would take a set of X variables and search over them to figure out the "best" ones to 
explain the variation in Y (where "best" is usually something like R2 but penalized for complexity and number 
of variables in the model).  That's the same basic idea except that we cannot then go on to cite p-values.  If I 



create a regression and examine a p-value then it has some information about how likely it is, that I'm being 
fooled and could see such a coefficient just by chance.  But if I'm p-hacking (finding the regression with the 
lowest possible p-value) then I need to be asking more sophisticated versions of "am I being fooled by 
randomness".  

Trees and Forests 
Next we can go from creating a single tree to growing a whole forest. 
Random Forests are more complex although they can offer improvements to classification accuracy.  

They are notoriously difficult to understand or explain, however – they are often mostly a "black box".  (Cathy 
O'Neil has book on policy implications of such.)  Nevertheless they can be a useful method of classification 
even if as a comparison – if a random forest model classifies A% correctly while your preferred model gets 
B%, then the difference (A-B) can be a useful way to assess how good is the model. 
 The idea of a Random Forest is to take a randomly-chosen sub-set of the data and build a tree model 
from it.  Then take another randomly-chosen sub-set and build another tree. And another and another…  
Take these trees and aggregate them (perhaps build 10 trees and figure out if 7 imply one outcome whereas 3 
imply the other outcome).  
# random Forest 
library('randomForest') 
set.seed(54321) 
 
# the command system.time() tells how long it takes 
system.time(model3 <- randomForest(as.factor(health_ins) ~ ., 

data=dat_cps_rf, importance=TRUE, proximity=TRUE)) 
print(model3) 
round(importance(model3),2) 
varImpPlot(model3) 

 
The Random Forest gives a "Confusion matrix" comparing the ones that are truly 0/1 versus what is 

predicted: 
 actual 0 actual 1 

predicted 0 1558 1961 
predicted 1 806 9988 

The previous logit model gives results of: 
 actual 0 actual 1 

predicted 0 5363 3415 
predicted 1 15261 61094 

The numbers of observations are different because I had clipped the size of the data for the random forest in 
order to economize on computing time.  So it's not apples-to-apples but skewed in favor of logit (since that's 
got more information).  But if we look at the fraction in each class, we see that: 

 random forest logit model 
 actual 0 actual 1 actual 0 actual 1 

predicted 0 0.109 0.137 0.063 0.040 
predicted 1 0.056 0.698 0.179 0.718 

So the random forest mis-classified 19.3% of the observations while the logit model mis-classified 21.9% - so 
even with nearly six times more observations, the logit was a worse fit overall.  (You can tweak both methods 
to do better, maybe a forest of conditional inference trees would be better or you can better specify the logit.  
These results are illustrative.) 
 Random forests can also be done for regression problems – the dependent variable need not be 0/1 as 
above but can be a continuous variable. 
 In classification problems, there are a range of options: logit or probit (binary or multinomial), 
trees/forests, then Support Vector Machines.  There's no obvious best option so play around to see! 



 These methods are still relatively new in economics; see Hal Varian's piece on Big Data: New Tricks for 
Econometrics. 

Support Vector Machines 
Another method of classifying data, usually when Y is 0/1 (or a limited number of outcomes). Package is 
e1071. These depend on tuning parameters with usual tradeoff between variance and bias – better 
performance in training samples can mean worse performance in test samples. It is related to logistic 
regression and can give similar performance. Chapter 9 of James, Witten, Hastie & Tibshirani is a nice 
explanation. 

Factor Analysis 
Another common procedure, particularly in finance, is a factor analysis.  This asks whether a variety of 

different variables can be well explained by common factors.  Sometimes when it's not clear about the 
direction of causality, or where the modeler does not want to impose an assumption of causality, this can be a 
way to express how much variation is common.  As an example, one price that people often see, which 
changes very often, is the price of gasoline.  If you have data on the prices at different gas stations over a long 
period of time, you would basically see that while the prices are not identical, they move together over time.  
This is not surprising since the price of oil fluctuates.  There might be interesting variation that at some times 
certain stations might be more or less responsive to price changes – but overall the story would be that there 
is a common influence. 
 
Factor Analysis (and the related technique of Principal Components Analysis, PCA) are not model-based and 
can be useful methods of exploration.  An example might be the easiest way to see how it works. 
 
I got daily data from Federal Reserve on Eurodollar interest rates for 1-, 3-, and 6-months, from 1971-2014 (so 
called since it was originally the rate to borrow dollars from a bank in London, which remains the center of 
this market). 

prcomp1 <- prcomp(~ ed1m + ed3m + ed6m, data = data_2) 
summary(prcomp1) 

Which shows that the first principal component explains 99.7% of the variation in these interest rates. 
 
(With a wider span of maturities, we often find that 3 factors explain most interest rate movements: level, 
slope, and curvature.) 

Prediction and Causality 
So to return to the generic example, "effin_magic", if your goal is simply prediction then you might estimate a 
series of different models -- effin_magic1, effin_magic2, …  For each one, you would split the data into 
training and test sets, estimate the effin_magic on the training set, then evaluate how well it does on the test 
set. For some estimation procedures the training set will be again split so that the model can tune 
hyperparameters. You repeat the estimation a number of times for different randomly-chosen test sets, to 
evaluate how robust the results are. Then do this for the next effin_magic and the next and the next. When 
evaluating predictions, your measure of goodness of fit can change depending on the problem. You should 
also look at goodness of fit for different subsets of data – does it do much better or worse for certain groups? 
(For example, a marketing algo might change around the holiday season when people are perhaps less likely 
to be shopping for themselves and more likely to be looking for gifts.) You might end up with an ensemble of 
models so for certain groups or circumstances one model is best for prediction. 
While prediction is often one criteria, often in economics we also want to consider causation. Getting from a 
good predictive model to a causal model is difficult and requires more theory. You will develop that as you go 
along, but pay attention to questions of endogeneity and omitted variables.  



Experiments and Quasi-Experiments 
• ideal: double-blind random sort into treatment and base sets 
• differences estimator for "natural experiments" or quasi-experiments 
• Problems can be internal: 

o incomplete randomization 
o failure to follow treatment protocol 
o attrition 
o experiment (Hawthorne) effects 

• or external 
o non-representative sample 
o non-rep program 
o treatment/eligibility 
o general equilibrium effects 

 
 

Time Series 
Basic definitions: 

• first difference ςYt = Yt – Yt-1 

• percent change is 1
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 and is approximately equal to ln(Yt) – ln(Yt-1) – this log approximation 
is commonly used 

• lags: the first lag of Yt is Yt-1; second lag is Yt-2, etc.; sometimes use lags of differences 
• Autocorrelation: how strong is last period data related to this period?  The autocorrelation coefficient 
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 for each lag length, j.  Sometimes plot a graph of the autocorrelation coefficients 

for various j. 
• Common assumption: Stationarity: a model that explains Y doesn't change over time – the future is 

like the past, so there's some point to examining the past – a crucial assumption in forecasting!  But 
this is why we usually use stock returns not stock price – the price is not likely stationary even if returns 
are.  (Also often assume ergodic.) 

• If autocorrelations are not zero, then OLS is not appropriate estimator if X and Y are both time series!  
The standard errors are a function of the autocorrelation terms so cannot properly evaluate the 
regression. 

• Seasonality is basically a regression with seasons (months, days, whatever) as dummy variables.  So 

could have 0 1 2 3 11t tY January February March November uβ β β β β= + + + + + +  - remember to leave 

one dummy variable out!  Or 0 1 2 11t tY Monday Tuesday Saturday uβ β β β= + + + + + . 
 
Types of Models 

• AR(1) – autoregression with lag 1 

• 0 1 1t t tY Y uβ β −= + +
 

• Forecast error is one-step-ahead error 



• Note that can re-write the AR(1) equation, by substituting 1 0 1 2 1t t tY Y uβ β− − −= + + , as 

( ) ( ) 2
0 1 0 1 2 1 0 1 1 2 1 11t t t t t t tY Y u u Y u uβ β β β β β β β− − − −= + + + + = + + + + , then substitute in for 

2 0 1 3 2t t tY Y uβ β− − −= + + , and so on.  So the current value is a function of all past error terms, 
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• Reminder of convergent series: look at ( )2
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• If 1 1β =  then none of the terms converge – the model becomes a random walk or integrated with 
order 1, I(1) or has a unit root.  (Can test for this, most common is Augmented Dickey-Fuller ADF.) 

o Also random walk with trend, so 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛾𝛾𝛾𝛾 + 𝑌𝑌𝑡𝑡−1 + 𝜀𝜀 
o And random walk with drift, so 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝑌𝑌𝑡𝑡−1 + 𝜀𝜀  (but no trend) 
o Or just plain random walk, 𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 + 𝜀𝜀 

• Random walk means that AR coefficients are biased toward zero, the t-statistics (and therefore p-
values) are unreliable, and we can have a "spurious regression" – two time series that seem related 
only because both increase over time.  Consider this case of variables X and Y, each of which are 𝑍𝑍𝑡𝑡 =
1 + 𝑍𝑍𝑡𝑡−1 + 𝜀𝜀 where ε is a random draw from a normal distribution. 
rm(list = ls(all = TRUE)) 
 
const_term <- 1 
ar_coeff <- 1 
start_val <- 100 
num_terms <- 100 
 
x_val <- matrix(data = NA, nrow = num_terms, ncol = 1) 
y_val <- matrix(data = NA, nrow = num_terms, ncol = 1) 
 
x_val[1] <- start_val 
y_val[1] <- start_val 
 
set.seed(12345) 
x_rand <- rnorm(num_terms, mean = 0, sd = 1) 
y_rand <- rnorm(num_terms, mean = 0, sd = 1) 
 
for (indx in 2:num_terms) { 
  x_val[indx] <- ar_coeff*x_val[indx - 1] + const_term + x_rand[indx] 
  y_val[indx] <- ar_coeff*y_val[indx - 1] + const_term + y_rand[indx] 
} 
 
model1 <- lm(y_val ~ x_val) 



summary(model1) 
 
(ar(y_val)) #AR method 

 
• AR(p) – autoregression with lag p 

• 0 1 1 2 2 ...t t t p t p tY Y Y Y uβ β β β− − −= + + + + +
 

• ADL(p,q) – autoregressive distributed lag model with p lags of dependent variable and q lags of an 
additional predictor, X. 

• Need usual assumptions for this model 
• Lag length?  Some art; some science!  Various criteria (AIC, BIC, given in text) to select lag length. 
• Granger Causality – jargon meaning that X helps predict Y; more precisely X does not Granger-cause Y 

if X does not help predict Y.  If X does not help predict Y then it cannot cause Y. 
• Trends provide non-stationary models 
• Random walk non-stationary model: 
• Breaks can also give non-stationary models 
• test for breaks, sup-Wald test 
• Cointegration "The Definitive Overview", ftp://ftp.econ.au.dk/creates/rp/14/rp14_38.pdf  
• Can model time series as regression of Y on X, of ln(Y) on ln(X), of ∆Y on ∆X, or of %∆Y on %∆X 

(where, recall, %∆Y = ∆lnY since the derivative of the log is the reciprocal) – this is where the art 
comes in! 

• Distributed lag models can be complicated (Chapter 15) and so we want at a minimum 
Heteroskedasticy and Autocorrelation Consistent (HAC) errors – like the heteroskedasticity-consistent 
errors before (Newey-West) 

• VAR – Vector AutoRegression, incorporate k regressors and p lags so estimate as many as k*p 
coefficients – these are classic in macro modeling, following work of Chris Sims 

• GARCH models – Generalized AutoRegressive Conditional Heteroskedasticity models – allow the 
variance of the error to change over time, depending on past errors – allows "storms" of volatility 
followed by quiet (low-variance) 

o 𝑦𝑦𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜀𝜀𝑡𝑡;  𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑞𝑞

𝑗𝑗=1  GARCH(p,q) 
o Combine with random walk analysis for IGARCH, etc 

 
In R: read “Time Series Analysis with R” for a high-level overview of what’s possible – that has refs to various 
packages that you can study, as you figure out what exactly you want to do. 
http://www.stats.uwo.ca/faculty/aim/tsar/ 
 
If you fall in love with time series analysis, James Hamilton has a big textbook that can help 

Methodology 
As you get more experience with econometrics you can start to understand the old jokes about why the 
discipline name includes "con" and "trics"!  Ed Leamer has a classic paper, Let's Take the 'Con' Out of 
Econometrics.  Diedre McCloskey has been a persistent critic, e.g. in Knowledge and Persuasion in Economics or 
The Trouble with Mathematics and Statistics in Economics.  Chris Sims wrote, Why are Econometricians so Little 
Help?  Although Angrist and Pischke wrote Mostly Harmless Econometrics.  You can understand why so many 
econometricians advise, "beware of econometricians." 

ftp://ftp.econ.au.dk/creates/rp/14/rp14_38.pdf
http://www.stats.uwo.ca/faculty/aim/tsar/


More… 
Econometrics goes on and on – there are thousands of techniques for new situations and new conditions, 
especially now that computing power quickly increases the amount of calculations that can be done.  There is 
so much to learn! 
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