
Online Lesson 1

Econ 29000 Kevin R Foster, CCNY Spring 2011

Center and Spread of the Data

Average

 Not necessarily representative: one person gets big bonus; other 99 get nothing, so average rises

Average

- The average is *often* a good way of understanding what happens to people within some group.
- But it is *not always* a good way.
- When projected forward, average is sometimes called "Expected Value"

Median & Mode

- Median is value of 50th percentile
- Value of observation in the middle (if odd number of observations) or average of two middle values (if even)
- Median bonus in example above is zero
- Mode is most common outcome

Spread around Center

- Want to know variation around the mean/median/mode
- Example: 2 hedge funds both average 10% returns
 - But one returns 9.5%, 10%, 10.5%
 - Other returns 0%, 10%, 20%
- Average deviation won't work; that's always zero (plus and minus cancel out)

Average Deviation = o

The average of some N values, $X_1, X_2, \dots X_N$, is given by $\overline{X} = \frac{1}{N} \sum_{i=1}^N X_i$.

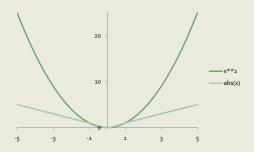
So what is the average deviation from the average, $\sum_{i=1}^{N} (X_i - \overline{X})$?

We know that $\sum_{i=1}^{N} (X_i - \overline{X}) = \sum_{i=1}^{N} X_i - \sum_{i=1}^{N} \overline{X}$ and, since \overline{X} is the same for every observation,

 $\sum_{i=1}^N \overline{X} = N\overline{X} = \sum_{i=1}^N X_i \text{ , if we substitute back from the definition of } \overline{X} \text{ . So } \sum_{i=1}^N \left(X_i - \overline{X} \right) = 0 \text{ . We can't re-use the average.}$

 $f(\cdot)$, such that $\sum_{i=1}^{N} f(X_i - \overline{X}) \neq 0$.

Standard Deviation


• Simple formula doesn't look simple

$$z = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

- Square the deviations so they're all positive (and don't cancel out)
- Then add up the squared deviations
- Take square root of sum

Other distances possible

- Any f()
- For example often absolute value
- So mean absolute deviation $\frac{1}{N}\sum_{i=1}^{N}|\mathbf{x}_{i}-\mathbf{x}|$

Distance measure and central measure

- Suppose just searched for a value, W, that minimized the distance, f(X_i – W)
- If f() were the absolute value, then set W = median
- If f() squares the distance, then set W = average

Coefficient of Variation

- Standard deviation divided by average
- Useful when there is no natural measure
- Such as Likert scale e.g. "like on a scale of 1-10"
- In finance this is reciprocal of Sharpe ratio, the returns over safe divided by risk

Standardized Data

- Subtract mean
- Divide by standard deviation

$$Z_i = \frac{X_i - \overline{X}}{s}$$