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Examples of hypothesis testing with t-distributions 

1. For a  t Distribution with sample average of 1.98, standard deviation of 1.37, and 8 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

2. For a  t Distribution with sample average of 2.76, standard deviation of 1.16, and 28 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

3. For a  t Distribution with sample average of 0.85, standard deviation of 0.37, and 5 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

 
4. For a  t Distribution with 22 observations and standard deviation of 2.12, what sample 

mean leaves 0.10 in the two tails? 
5. For a  t Distribution with 9 observations and standard deviation of 1.19, what sample 

mean leaves 0.05 in the two tails? 
6. For a  t Distribution with 30 observations and standard deviation of 2.95, what sample 

mean leaves 0.01 in the two tails? 
 

7. Sample A has mean 1.92, standard deviation of 2.24, and 26 observations.  Sample B 
has mean 3.57, standard deviation of 1, and 29 observations.  Test the null hypothesis of 
no difference. 

8. Sample A has mean 2.16, standard deviation of 1.06, and 17 observations.  Sample B 
has mean 2.69, standard deviation of 0.02, and 16 observations.  Test the null 
hypothesis of no difference. 

9. Sample A has mean 2.96, standard deviation of 0.89, and 18 observations.  Sample B 
has mean 0.11, standard deviation of 2.89, and 12 observations.  Test the null 
hypothesis of no difference. 

 
Extra to work on: 

10. For a  t Distribution with sample average of 4.41, standard deviation of 0.35, and 7 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

11. For a  t Distribution with sample average of 1.16, standard deviation of 2.7, and 7 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

12. For a  t Distribution with sample average of 0.03, standard deviation of 2.35, and 5 
observations, what is the area in both tails, for a null hypothesis of zero mean ? 

 
13. For a  t Distribution with 24 observations and standard deviation of 1.25, what sample 

mean leaves 0.56 in the two tails? 
14. For a  t Distribution with 11 observations and standard deviation of 0.05, what sample 

mean leaves 0.48 in the two tails? 



15. For a  t Distribution with 4 observations and standard deviation of 0.48, what sample 
mean leaves 0.92 in the two tails? 

16. For a  t Distribution with 8 observations and standard deviation of 1.05, what sample 
mean leaves 0.69 in the two tails? 

 
17. Sample A has mean 4.9, standard deviation of 2.19, and 27 observations.  Sample B has 

mean 4.48, standard deviation of 0.84, and 5 observations.  Test the null hypothesis of 
no difference. 

18. Sample A has mean 3.24, standard deviation of 0.2, and 9 observations.  Sample B has 
mean 0.49, standard deviation of 1.96, and 22 observations.  Test the null hypothesis of 
no difference. 

19. Sample A has mean 0.01, standard deviation of 0.01, and 15 observations.  Sample B 
has mean 4.04, standard deviation of 2.6, and 2 observations.  Test the null hypothesis 
of no difference. 

20. Sample A has mean 0.34, standard deviation of 2.14, and 27 observations.  Sample B 
has mean 4.94, standard deviation of 1.1, and 18 observations.  Test the null hypothesis 
of no difference. 

21. Sample A has mean 0.54, standard deviation of 0.71, and 20 observations.  Sample B 
has mean 3.09, standard deviation of 0.14, and 27 observations.  Test the null 
hypothesis of no difference. 

22. Sample A has mean 2.31, standard deviation of 2.98, and 23 observations.  Sample B 
has mean 0.85, standard deviation of 2.65, and 12 observations.  Test the null 
hypothesis of no difference. 

23. Sample A has mean 3.95, standard deviation of 2.33, and 30 observations.  Sample B 
has mean 4.59, standard deviation of 0.14, and 2 observations.  Test the null hypothesis 
of no difference. 

24. Sample A has mean 3.99, standard deviation of 1.59, and 26 observations.  Sample B 
has mean 0.1, standard deviation of 1.93, and 4 observations.  Test the null hypothesis 
of no difference. 

25. Sample A has mean 3.95, standard deviation of 2.56, and 22 observations.  Sample B 
has mean 2.23, standard deviation of 0.82, and 18 observations.  Test the null 
hypothesis of no difference. 

 
You have doubtless noticed by now that much of the basic statistical reasoning comes down to 

simply putting the numbers into a basic form, 
X

X µ
σ
−

, where the X-bar is the sample average, 

the Greek letter mu, µ, is the value from the null hypothesis, and the Greek letter sigma, σ, is 
the standard error of the measurement X-bar.  This basic equation was used to transform a 
variable with a Normal distribution into a variable with a Standard Normal distribution (µ=0 
and σ=1) by subtracting the mean and dividing by the standard deviation. 
 
It might not be immediately clear that even when we form hypothesis tests on the differences 
between two samples A and B, so we compare AX  with BX , that we're using that same form.  



But it should be clearer if we notate the difference as D, where A BD X X= − , so the test 

statistic general form is 
D

D µ
σ
−

, where we usually test the null hypothesis of µ=0 so it drops out 

of the equation.  The test statistic, A B

D

X X
σ
−

, then, is really the usual form, 
( ) 0A B

D
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− −

 but 

without writing the zero.  Then we use the formula already derived to get the standard error of 
the difference in means, σD 
 

The only wrinkle introduced by the t-distribution is that we take the exact same form, 
X

X µ
σ
−

, 

but if there are fewer than 30 observations we look up the value in a different table (for a t 
distribution); if there are more than 30 or so, we look up the value in the normal table just like 
always. 
 
Going forward, when we use a different estimator (something more sophisticated than the 
sample average) we will create other test statistics (sometimes called t-statistics) of the same 

basic form, but for different estimators – call it X .  Then the test-statistic is 
X

X µ
σ
−





, where we 

use the standard error of this other estimator.  So it's not a bad idea, in a beginning course in 
statistics, to reflexively write down that basic formula and start trying to fill in values.  Ask what 
is the estimator's value in this sample?  That's X .  What is the value of that statistic, if the null 
hypothesis were true?  That's µ.  What's the standard error of the estimator?  That's Xσ



.  Put 

those values into the formula and roll! 
 

Statisticians, who know the whole Greek alphabet, sometimes say X  as "X-wiggle" or "X-
twiddle" as if they don't know what a tilde is. 
 
Interpretation 
 

In many arguments, it is important show that a certain estimator is statistically significantly 
different from zero.  But that mere fact does not "prove" the argument and you should not be 
fooled into believing otherwise.  It is one link in a logical chain but any chain is only as strong as 
its weakest link.  If there is strong statistical significance then this means one link of the chain is 
strong, but if the rest of the argument is held together by threads it will not support any 
weight.  As a general rule, you will rarely use a word like "prove" if you want to be precise 
(unless you're making a mathematical proof).  Instead, phrases like "consistent with the 
hypothesis" or "inconsistent with the hypothesis" are better, since they remind the reader of 
the linkage: the statistics can strengthen or weaken the argument but they are not a 
substitute. 
 



For example if you watch a crime drama on TV you'll see court cases where the prosecutor 
proves that the defendant does not have an alibi for the time the crime was committed.  Does 
that mean that the defendant is guilty?  Not necessarily – only that the defendant cannot be 
proven innocent by proving that they were somewhere else at the time of the crime. 
 
You could find statistics to show that there is a statistically significant link between the time on 
the clock and the time I start lecture.  Does that mean that the clock causes me to start talking?  
(If the clock stopped, would there be no more lecture?) 
 
There are millions of examples.  In the ATUS data that we've been using, we see that people 
who are not working have a statistically significant increase in time on religious activities.  We 
find a statistically significant negative correlation between the time that people spend on 
religious activities and their income. Do these mean that religion causes people to be poorer?  
(We could go on, comparing the income of people who are unusually devout, perhaps finding 
the average income for quartiles or deciles of time spent on religious activity.)  Of course that's 
a ridiculous argument and no amount of extra statistics or tests can change its essentially 
ridiculous nature!  If someone does a hundred statistical tests of increasing sophistication to 
show that there is that negative correlation, it doesn't change the essential part of the 
argument.  The conclusion is not "proved" by the statistics.  The statistics are "consistent with 
the hypothesis" or "not inconsistent with the hypothesis" that religion makes people poor.  If I 
wanted to argue that religion makes people wealthy, then these statistics would be 
inconsistent with that hypothesis. 
 
Generally two variables, A and B, can be correlated for various reasons.  Perhaps A causes B; 
maybe B causes A.  Maybe both are caused by some other variable.  Or they each cause the 
other (circular causality).  Or perhaps they just randomly seem to be correlated.  Statistics can 
cast doubt on the last explanation but it's tough to figure out which of the other explanations is 
right. 
 
On Sampling 
 

All of these statistical results, which tell us that the sample average will converge to the true 
expected value, are extremely useful, but they crucially hinge on starting from a random 
sample --  just picking some observations where the decision on which ones to pick is done 
completely randomly and in a way that is not correlated with any underlying variable. 
 
For example if I want to find out data about a typical New Yorker, I could stand on the street 
corner and talk with every tenth person walking by – but my results will differ, depending on 
whether I stand on Wall Street or Canal Street or 42nd Street or 125th Street or 180th Street!  
The results will differ depending on whether I'm doing this on Friday or Sunday; morning or 
afternoon or at lunchtime.  The results will differ depending on whether I sample in August or 
December.  Even more subtly, the results will differ depending on who is standing there asking 
people to stop and answer questions (if the person doing the sample is wearing a formal suit or 



sweatpants, if they're white or black or Hispanic or Asian, if the questionnaire is in Spanish or 
English, etc). 
 
In medical testing the gold standard is "randomized double blind" where, for example, a group 
of people all get pills but half get a placebo capsule filled with sugar while the other half get the 
medicine.  This is because results differ, depending on what people think they're getting; 
evaluations differ, depending on whether the examiner thinks the test was done or not.  (One 
study found that people who got pills that they were told were expensive reported better 
results than people who got pills that were said to be cheap – even though both got placebos.) 
 
Getting a true random sample is tough.  Randomly picking telephone numbers doesn't do it 
since younger people are more likely to have only a mobile number not a land line.  Online polls 
aren't random.  Online reviews of a product certainly aren't random.  Government surveys such 
as the ones we've used are pretty good – some smart statisticians worked very hard to ensure 
that they're a random sample.  But even these are not good at estimating, say, the fraction of 
undocumented immigrants in a population. 
 
There are many cases that are even subtler.  This is why most sampling will start by reporting 
basic demographic information and comparing this to population averages.  One of the very 
first questions to be addressed is, "Are the reported statistics from a representative sample?" 
 
 
 


