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Note on the t-distribution: 
Talk about the t distribution always makes me thirsty.  Why?  It was originally called 
"Student's t distribution" because the author wanted to remain anonymous and referred to 
himself as just a student of statistics.  William Gosset worked at Guinness Brewing, which 
had a policy against its employees publishing material based on their work – they didn't 
want their brewing secrets revealed!  It's amusing to think that Gosset, who graduated top 
of his class from the one of the world's top universities in 1899, went to work at Guinness – 
although at the time that was a leading industrial company doing cutting-edge research.  
A half-century later, the brightest students from top universities would go to GM; after a 
century the preferred destinations would be Google or Goldman Sachs.  The only thing 
those companies have in common is the initial G. 

 

Interpretation 
 

In many arguments, it is important show that a certain estimator is statistically significantly 
different from zero.  But that mere fact does not "prove" the argument and you should not be 
fooled into believing otherwise.  It is one link in a logical chain but any chain is only as strong as 
its weakest link.  If there is strong statistical significance then this means one link of the chain is 
strong, but if the rest of the argument is held together by threads it will not support any 
weight.  As a general rule, you will rarely use a word like "prove" if you want to be precise 
(unless you're making a mathematical proof).  Instead, phrases like "consistent with the 
hypothesis" or "inconsistent with the hypothesis" are better, since they remind the reader of 
the linkage: the statistics can strengthen or weaken the argument but they are not a 
substitute. 
 
A recent example: there is a significant correlation between student homework and exam 
grade; this is clearly shown in this graph: 



 
Do you think this is causal?  Does hard work tend to pay off?   
 
Recall the use of evidence to make an argument: if you watch a crime drama on TV you'll see 
court cases where the prosecutor proves that the defendant does not have an alibi for the time 
the crime was committed.  Does that mean that the defendant is guilty?  Not necessarily – only 
that the defendant cannot be proven innocent by demonstrating that they were somewhere 
else at the time of the crime. 
 
You could find statistics to show that there is a statistically significant link between the time on 
the clock and the time I start lecture.  Does that mean that the clock causes me to start talking?  
(If the clock stopped, would there be no more lecture?) 
 
There are millions of examples.  In the ATUS data that we've been using, we see that people 
who are not working have a statistically significant increase in time on religious activities.  We 
find a statistically significant negative correlation between the time that people spend on 
religious activities and their income. Do these mean that religion causes people to be poorer?  
(We could go on, comparing the income of people who are unusually devout, perhaps finding 
the average income for quartiles or deciles of time spent on religious activity.)  Of course that's 
a ridiculous argument and no amount of extra statistics or tests can change its essentially 
ridiculous nature!  If someone does a hundred statistical tests of increasing sophistication to 
show that there is that negative correlation, it doesn't change the essential part of the 
argument.  The conclusion is not "proved" by the statistics.  The statistics are "consistent with 
the hypothesis" or "not inconsistent with the hypothesis" that religion makes people poor.  If I 
wanted to argue that religion makes people wealthy, then these statistics would be 
inconsistent with that hypothesis. 
 
Generally two variables, A and B, can be correlated for various reasons.  Perhaps A causes B; 
maybe B causes A.  Maybe both are caused by some other variable.  Or they each cause the 
other (circular causality).  Or perhaps they just randomly seem to be correlated.  Statistics can 
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cast doubt on the last explanation but it's tough to figure out which of the other explanations is 
right. 
 

On Sampling 
 

All of these statistical results, which tell us that the sample average will converge to the true 
expected value, are extremely useful, but they crucially hinge on starting from a random 
sample --  just picking some observations where the decision on which ones to pick is done 
completely randomly and in a way that is not correlated with any underlying variable. 
 
For example if I want to find out data about a typical New Yorker, I could stand on the street 
corner and talk with every tenth person walking by – but my results will differ, depending on 
whether I stand on Wall Street or Canal Street or 42nd Street or 125th Street or 180th Street!  
The results will differ depending on whether I'm doing this on Friday or Sunday; morning or 
afternoon or at lunchtime.  The results will differ depending on whether I sample in August or 
December.  Even more subtly, the results will differ depending on who is standing there asking 
people to stop and answer questions (if the person doing the sample is wearing a formal suit or 
sweatpants, if they're white or black or Hispanic or Asian, if the questionnaire is in Spanish or 
English, etc). 
 
In medical testing the gold standard is "randomized double blind" where, for example, a group 
of people all get pills but half get a placebo capsule filled with sugar while the other half get the 
medicine.  This is because results differ, depending on what people think they're getting; 
evaluations differ, depending on whether the examiner thinks the test was done or not.  (One 
study found that people who got pills that they were told were expensive reported better 
results than people who got pills that were said to be cheap – even though both got placebos.) 
 
Getting a true random sample is tough.  Randomly picking telephone numbers doesn't do it 
since younger people are more likely to have only a mobile number not a land line.  Online polls 
aren't random.  Online reviews of a product certainly aren't random.  Government surveys such 
as the ones we've used are pretty good – some smart statisticians worked very hard to ensure 
that they're a random sample.  But even these are not good at estimating, say, the fraction of 
undocumented immigrants in a population. 
 
There are many cases that are even subtler.  This is why most sampling will start by reporting 
basic demographic information and comparing this to population averages.  One of the very 
first questions to be addressed is, "Are the reported statistics from a representative sample?" 
 



On Bootstrapping 
 

Recall the whole rationale for our method of hypothesis testing.  We know that, if some 
average were truly zero, it would have a normal distribution (if enough observations; otherwise 
a t distribution) around zero.  It would have some standard error (which we try to estimate).  
The mean and standard error are all we need to know about a normal distribution; with this 
information we can answer the question: if the mean were really zero, how likely would it be, 
to see the observed value?  If the answer is "not likely" then that suggests that the hypothesis 
of zero mean is incorrect; if the answer is "rather likely" then that does not reject the null 
hypothesis. 
 
This depends on us knowing (somehow) that the mean has a normal distribution (or a t 
distribution or some known distribution).  Are there other ways of knowing?  We could use 
computing power to "bootstrap" an estimate of the significance of some estimate. 
 
This "bootstrapping" procedure done in a previous lecture note, on polls of the fraction of 
ATUS respondents with kids. 
 
Although differences in averages are distributed normally (since the averages themselves are 
distributed normally, and then linear functions of normal distributions are normal), we might 
calculate other statistics for which we don't know the distributions.  Then we can't look up the 
values on some reference distribution – the whole point of finding Z-statistics is to compare 
them to a standard normal distribution.  For instance, we might find the medians, and want to 
know if there are "big" differences between medians. 
 
Make the same basic procedure as above: take the whole dataset, treat it as if it were the 
population, and sample from it.  Calculate the median of each sample.  Plot these; the 
distribution will not generally have a Normal distribution but we can still calculate 
bootstrapped p-values. 
 
For example, suppose I have a sample of 100 observations with a standard error equal to 1 
(makes it easy) and I calculate that the average is 1.95.  Is this "statistically significantly" 
different from zero? 
 
One way to answer this is to use the computer to create lots and lots of samples, from a 
population with a zero mean, and then count up how many are farther from zero than 1.95.  
We can calculate the area in both tails beyond 1.95 to be 5.12%.  When I bootstrapped values I 
got answers pretty close (within 10 bps) for 10,000 simulations.  More simulations would get 
more precise values.  
 
So let's try a more complicated situation.  Imagine two distributions have the same mean; 
what is the distribution of median differences?  I get this histogram of median differences: 



 
So clearly a value beyond about 0.15 would be pretty extreme and would convince me that the 
real distributions do not have the same median.  So if I calculated a value of -0.17, this would 
have a low bootstrapped p-value. 
 
 
 
 
 
 


