
Lecture Notes 5 
Econ 29000, Principles of Statistics 
Kevin R Foster, CCNY 
Spring 2011 
 
 
Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 
Students will be able to: 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

 
 
The sample average has a normal distribution.  This is hugely important for two reasons: one, it 
allows us to estimate a parameter, and two, because it allows us to start to get a handle on the 
world and how we might be fooled.   
 
Estimating a parameter 
The basic idea is that if we take the average of some sample of data, this average should be a 
good estimate of the true mean.  For many beginning students this idea is so basic and obvious 
that you never think about when it is a reasonable assumption and when it might not be.  For 
example, one of the causes of the Financial Crisis was that many of the 'quants' (the 
quantitative modelers) used overly-optimistic models that didn't seriously take account of the 
fact that financial prices can change dramatically.  Most financial returns are not normally 
distributed!  But we'll get more into that later; for now just remember this assumption.  Later 
we'll talk about things like bias and consistency. 
 
Variation around central mean 
Knowing that the sample average has a normal distribution also helps us specify the variation 
involved in the estimation.  We often want to look at the difference between two sample 
averages, since this allows us to tell if there is a useful categorization to be made: are there 
really two separate groups?  Or do they just happen to look different? 
 
How can we try to guard against seeing relationships where, in fact, none actually exist? 
To answer this question we must think like statisticians.  To "think like a statistician" is to do 
mental handstands; it often seems like looking at the world upside-down.  But as you get used 
to it, you'll discover how valuable it is.  (There is another related question: "What if there really 
is a relationship but we don't find evidence in the sample?"  We'll get to that.) 
 
The first step in "thinking like a statistician" is to ask, What if there were actually no   
relationship;  zero difference?  What would we see? 
 
Consider two random variables, X and Y; we want to see if there is a difference in mean 
between them.  We know that the sample averages are distributed normally so both X  and Y  
are distributed normally.  We know additionally that linear functions of normal distributions 



are normal as well, so ( )X Y−  is distributed normally.    If there were no difference in the 

means of the two variables then ( )X Y−  would have a true mean of zero; 0X Yµ − = .  But we 

are not likely to ever see a sample mean of exactly zero!  Sometimes we will probably see a 
positive number, sometimes a negative.  How big of a difference would convince us?  A big 
difference would be evidence in favor of different means; a small difference would be evidence 
against.  But, in the phrase of Dierdre McCloskey, "How big is big?" 
 
Let's do an example.  X and Y are both distributed normally but with a moderately error 
relative to their mean (a modest signal-to-noise ratio), so X~N(10,3) and Y~N(12,3), with 50 
observations.  
 
In our sample the difference is 0.95; ( )X Y− =-0.95. 

 
A histogram of these differences shows: 

 
 
 Now we consider a rather strange thing: suppose that there were actually zero difference – 
what might we see?  On the Excel sheet "normal_differences" (nothin' fancy) we look at 1000 
repetitions of a sample of 50 observations of X and Y.   
 
A histogram of 1000 possible samples in the case where there was no difference shows this: 
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So a difference of -0.95 is smaller than all but 62 of the 1000 random tries.  We can say that, if 
there were actually no difference between X and Y, we would get something from the range of 
values above.  Since we actually estimated -0.95, which is smaller than 62 of 1000, we could 
say that "there is just a 6.2% chance that X and Y could really have no difference but we'd see 
such a small value." 
 
 
Law of Large Numbers 
Probability and Statistics have many complications with twists and turns, but it all comes down 
to just a couple of simple ideas.  These simple ideas are not necessarily intuitive – they're not 
the sort of things that might, at first, seem obvious.  But as you get used to them, they'll 
become your friend. 
 
With computers we can take much of the complicated formulas and derivations and just do 
simple experiments.  Of course an experiment cannot replace a formal proof, but for the 
purposes of this course you don't need to worry about a formal proof. 
 
One basic idea of statistics is the "Law of Large Numbers" (LLN).  The LLN tells us that certain 
statistics (like the average) will very quickly get very close to the true value, as the size of the 
random sample increases.  This means that if I want to know, say, the fraction of people who 
are right-handed or left-handed, or the fraction of people who will vote for Politician X versus 
Y, I don't need to talk with every person in the population. 
 
This is strenuously counter-intuitive.  You often hear people complain, "How can the pollsters 
claim to know so much about voting?  They never talked to me!"  But they don't have to talk to 
everyone; they don't even have to talk with very many people.  The average of a random 
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sample will "converge" to the true value in the population, as long as a few simple assumptions 
are satisfied. 
 
Instead of a proof, how about an example?  Open an Excel spreadsheet (or OpenOffice Calc, if 
you're an open-source kid).  We are going to simulate the number of people who prefer 
politician X to Y.  
 
We can do this because Excel has a simple function, RAND(), which picks a random number 
between 0 and 1.  So in the first cell,A1, I type "=RAND()".  I'm going to pick a fraction, 45% -- 
meaning that I will assume that politician X is supported by 45% of the population; in Excel this 
means that I will write, in cell B1, " =IF(A1<0.45,1,0)".  [Excel has some of the most ponderous 
inelegant programming on the planet; this "IF" statement first gives the condition, "A1 < 0.45", 
that is to be determined to be either true or false, then after the comma "1" tells it to show the 
value 1 if true, then after the comma the "0" tells it to show the value 0 if false.] 
 
Assume that there are 1000 people in the population, so copy and paste the contents of cells 
A1 and B1 down to all of the cells A2 through A1000 and B2 through B1000.  Now this gives us 
1000 people, who are randomly assigned to prefer either politician X or Y.  In B1001 you can 
enter the formula "=SUM(B1:B1000)" which will find out how many people (of 1000) who would 
vote for Politician X.  Go back to cell C1 and enter the formula "=B1001/1000" – this tells you 
the fraction of people who are actually backing X (not quite equal to the percentage that you 
set at the beginning, but close). 
 
Next suppose that we did a survey and randomly selected just 30 people for our poll.  We know 
that we won't get the exact right answer, but we want to know "How inaccurate is our answer 
likely to be?"  We can figure that out; again with some formulas or with some computing 
power. 
 
For my example (shown in the spreadsheet, samples_for_polls.xls) I first randomly select one of 
the people in the population with the formula, in cell A3, =ROUND(1+RAND()*999,0).  This 
takes a random number between 0 and 1 (RAND()), multiplies it by 999 so that I will have a 
random number between 0 and 999, then adds 1 to get a random number between 1 and 1000.  
Then it rounds it off to be an integer (that's the =ROUND( ,0) part).   
 
Next in B3 I write the formula, =INDIRECT(CONCATENATE("population!B",A3)).  
The inner part, CONCATENATE("population!B",A3), takes the random number that we 
generated in column A and makes it into a cell reference.  So if the random number is 524 then 
this makes a cell address, population!B524.  Then the =INDIRECT(population!B524) 
tells Excel to operate on it as if it were a cell address and return the value in B524 or the 
worksheet that I labeled "population". 
 
On the worksheet I then copied these formulas down from A2 to B32 to get a poll of the views 
of 30 randomly-selected people.  Then cell B1 gets the formula, =SUM(B3:B32)/30.  This 
tells me what fraction of the poll support the candidate, if the true population has 45% 



support.  I copied these columns five times to create 5 separate polls.  When I ran it (the 
answers will be different for you), I got 4 polls showing less than 50% support (in a vote, that's 
the relevant margin) and 1 showing more than 50% support, with a rather wide range of values 
from 26% to 50%.  (If you hit "F9" you will get a re-calculation, which takes a new bunch of 
random numbers.) 
 
Clearly just 30 people is not a great poll;  a larger poll would be more accurate.  (Larger polls are 
also more expensive so polling organizations need to strategize to figure out where the 
marginal cost of another person in the poll equals the marginal benefit.) 
 
In the problem set, you will be asked to do some similar calculations.  If you have some basic 
computer programming background then you can use a more sophisticated program to do it 
(to create histograms and other visuals, perhaps).  Excel is a donkey – it does the task but 
slowly and inelegantly. 
 
So we can formulate many different sorts of questions once we have this figured out. 
 
First the question of polls: if we poll 500 people to figure out if they approve or disapprove of 
the President, what will be the standard error?   
 

With some math ( ) we can figure out a formula for the standard error of the sample 
average.  It is just the standard deviation of the sample divided by the square root of the 
sample size.  So the sample average is distributed normally with mean of µ and standard error 
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Sometimes this causes confusion because in calculating the standard error, s, we divided by 

the square root of (N-1), since 
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, so it seems you're dividing twice.  But this is 

correct: the first division gets us an estimate of the sample's standard deviation; the second 
division by the square root of N gets us the estimate of the sample average's standard error. 
 
The standardized test statistic (sometimes called Z-score since Z will have a standard normal 

distribution) is the mean divided by its standard error, 
X X XNsse s

N
= = .  This shows 

clearly that a larger sample size (bigger N) amplifies differences of X  from zero (the usual null 
hypothesis).  A small difference, with only a few observations, could be just chance; a small 
difference, sustained over many observations, is less likely to be just chance. 
 



One of the first things to note about this formula is that, as N rises (as the sample gets larger) 
the standard error gets smaller – the estimator gets more precise.  So if N could rise towards 
infinity then the sample average would converge to the true mean; we write this as pX µ→  

where the p→  means "converges in probability as N goes toward infinity". 

 
So the sample average is unbiased.  This simply means that it gets closer and closer to the true 
value as we get more observations.  Generally "unbiased" is a good thing, although later we'll 
discuss tradeoffs between bias and variance. 
 
Return to the binomial distribution, and its normal approximation.  We know that std error has 
its maximum when p= ½, so if we put in p=0.5 then the standard error of a poll is, at worst, 

1
2 n

, so more observations give a better approximation.  See Excel sheet poll_examples.  We'll 

return to this once we learn a bit more about the standard error of means. 
 
 

 A bit of Math: 
We want to use our basic knowledge of linear combinations of normally-distributed variables 
to show that, if a random variable, X, comes from a normal distribution then its average will 
have a normal distribution with the same mean and the standard deviation of the sample 
divided by the square root of the sample size, 
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The formula for the average is 
1
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= ∑ .  Consider first a case where there are just 2 

observations.  This case looks very similar to our rule about, if W CX DY= + , then 

( )2 2 2 2~ , 2X Y X Y XYW N C D C D CDµ µ σ σ σ+ + + .  With N=2, this is 1 2
1 1
2 2

X X X= + , which has 

mean 1 2
1 1
2 2X Xµ µ+ , and since each X observation comes from the same distribution then 

1 2X Xµ µ=  so the mean is Xµ  (it's unbiased).  You can work it out when there are n  
observations. 
 
Now the standard error of the mean is 
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.  The covariance is 

zero because we assume that we're making a random sample.   Again since they come from 



the same distribution, 1 2X Xσ σ=  , the standard error is 
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With n observations, the mean works out the same and the standard error of the average is 
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