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Details of Distributions T-distributions, chi-squared, etc. 
 

Take the basic methodology of Hypothesis Testing and figure out how to deal with a few 
complications. 
 
T-tests 
The first complication is if we have a small sample and we're estimating the standard 
deviation.  In every previous example, we used a large sample.  For a small sample, the 
estimation of the standard error introduces some additional noise – we're forming a hypothesis 
test based on an estimation of the mean, using an estimation of the standard error.  
 
How "big" should a "big" sample be?  Evidently if we can easily get more data then we should 
use it, but there are many cases where we need to make a decision based on limited 
information – there just might not be that many observations.  Generally after about 30 
observations is enough to justify the normal distribution.  With fewer observations we use a t-
distribution. 
 
To work with t-distributions we need the concept of "Degrees of Freedom" (df).  This just takes 
account of the fact that, to estimate the sample standard deviation, we need to first estimate 

the sample average, since the standard deviation uses ( )2
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many "free" observations.  You might remember from algebra that to solve for 2 variables you 
need at least two equations, three equations for three variables, etc.  If we have 5 observations 
then we can only estimate at most five unknown variables such as the mean and standard 
deviation.  And "degrees of freedom" counts these down. 
 
If we have thousands of observations then we don't really need to worry.  But when we have 
small samples and we're estimating a relatively large number of parameters, we count degrees 
of freedom. 
 
The family of t-distributions with mean of zero looks basically like a Standard Normal 
distribution with a familiar bell shape, but with slightly fatter tails.  There is a family of t-
distributions with exact shape depending on the degrees of freedom; lower degrees of 
freedom correspond with fatter tails (more variation; more probability of seeing larger 
differences from zero). 
 



This chart compares the Standard Normal PDF with the t-distributions with different degrees 
of freedom. 

 
 
This table shows the different critical values to use in place of our good old friend 1.96: 
Critical Values for t vs N 
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 5 2.57   2.02   4.03 
 10 2.23 

 
1.81 

 
3.17 

 20 2.09 
 

1.72 
 

2.85 
 30 2.04 

 
1.70 

 
2.75 

 50 2.01 
 

1.68 
 

2.68 
 100 1.98 

 
1.66 

 
2.63 

 Normal 1.96   1.64   2.58 
 

       The higher numbers for lower degrees of freedom mean that the confidence interval must be 
wider – which should make intuitive sense.  With just 5 or 10 observations a 95% confidence 
interval should be wider than with 1000 or 10,000 observations (even beyond the familiar 
sqrt(N) term in the standard error of the average). 
 
T-tests with two samples 
When we're comparing two sample averages we can make either of two assumptions: either 
the standard deviations are the same (even though we don't know them) or they could be 
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different.  Of course it is more conservative to assume that they're different (i.e. don't assume 
that they're the same) – this makes the test less likely to reject the null. 
 
Assuming that the standard errors are different, we compare this test statistic against a t-
distribution with degrees of freedom of the minimum of either ( )1 1n −  or ( )2 1n − . 

 
Sometimes we have paired data, which can give us more powerful tests.  
 
We can test if the variances are in fact equal, but a series of hypothesis tests can give us 
questionable results. 
 
Other Distributions 
There are other sampling distributions than the Normal Distribution and T-Distribution.  There 
are χ2 (Chi-Squared) Distributions (also characterized by the number of degrees of freedom); 
there are F-Distributions with two different degrees of freedom.  For now we won't worry 
about these but just note that the basic procedure is the same: calculate a test statistic and 
compare it to a known distribution to figure out how likely it was, to see the actual value. 
 
(On Car Talk they joked, "I once had to learn the entire Greek alphabet for a college class.  I was taking a course in ... 
Statistics!")  
 
Complications from a Series of Hypothesis Tests 
Often a modeler will make a series of hypothesis tests to attempt to understand the inter-
relations of a dataset.  However while this is often done, it is not usually done correctly.  Recall 
from our discussion of Type I and Type II errors that we are always at risk of making incorrect 
inferences about the world based on our limited data.  If a test has a significance level of 5% 
then we will not reject a null hypothesis until there is just a 5% probability that we could be 
fooled into seeing a relationship where there is none.  This is low but still is a 1-in-20 chance.  If 
I do 20 hypothesis tests to find 20 variables that significantly impact some variable of interest, 
then it is likely that one of those variables is fooling me (I don't know which one, though).  It is 
also likely that my high standard of proof meant that there are other variables which are 
important but which didn't seem to be. 
 
Sometimes you see very stupid people who collect a large number of possible explanatory 
variables, run hundreds of analyses, and find the ones that give the "best-looking" test 
statistics – the ones that look good but are actually entirely fictitious.  Many statistical 
programs have procedures that will help do this; help the user be as stupid as he wants. 
 
Why is this stupid?  It completely destroys the logical basis for the hypothesis tests and makes 
it impossible to determine whether or not the data are fooling me.  In many cases this actually 
guarantees that, given a sufficiently rich collection of possible explanatory variables, I can form 
hypothesis tests and show that some variables have "good" test statistics – even though they 
are completely unconnected.  Basically this is the infamous situation where a million monkeys 
randomly typing would eventually write Shakespeare's plays.  A million earnest statisticians, 



doing random statistical tests, will eventually find test statistics that look great with very low 
p-values.  But that's just due to persistence; it doesn't reflect anything about the larger world.   
 
In finance, which throws out gigabytes of data, this phenomenon is common.  For instance 
there used to be a relationship between which team won the Super Bowl (in January) and 
whether the stock market would have a good year.  It seemed to be a solid result with decades 
of supporting evidence – but it was completely stupid and everybody knew it.  Analysts still 
work to get slightly-less-implausible but still completely stupid results, which they use to sell 
their securities. 
 
Consider the logical chain of making a number of hypothesis tests in order to find one 
supposedly-best model.  When I make the first test, I have 5% chance of making a Type I error.  
Given the results of this test, I make the second test, again with a 5% chance of making a Type I 
error.  The probability of not making an error on either test is (.95)(.95) = .9025 so the 
significance level of the overall test procedure is not 5% but actually  (1 - .9025) = 9.75%.  If I 
make three successive hypothesis tests, the probability of not making an error is .8574 so the 
significance level is 14.26%.  If I make 10 successive tests then the significance level is over 
40%!  This means that there is a 40% chance that the tester is being fooled and there is not 
actually the relationship that was hypothesized – and worse, the stupid tester believes that the 
significance level is just 5%. 


