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The first part of this lecture covers "Know Your Data" and "Show Your Data," which reviews 
some of the very initial components necessary for data analysis. 
 
You should view online video 1; that reviews basic information about measures of the data 
center such as mean, median, and mode; also measures of the spread of the data such as the 
standard deviation.  Those notes are the middle part of this lecture.  In class we will skip right 
to Lecture 2, where we apply these basic measures to learn about the ATUS dataset. 
 
 

Further online material about statistics can be found: 
 

 Hans Rosling is a phenom of TED talks and now "The Joy of Stats" here, 
http://www.open.ac.uk/openlearn/whats-on/the-joy-stats  His website also has "The 
Joy of Stats," along with some data, http://www.gapminder.org/  His TED talks: 
http://www.ted.com/speakers/hans_rosling.html 

 

 On Data Visualization, http://www.interaction-design.org/encyclopedia/ 
 

 Strata Conference (includes videos; Hilary Mason's is a good intro) 
http://strataconf.com/strata2011/public/schedule/proceedings 

 

 http://www.scientificamerican.com/blog/post.cfm?id=words-pictures-and-the-visual-
displ-2011-01-12 

 

 Here's one on how lousy math education is: no real-world problem worth solving is set 
up like a textbook problem.  Real-world problems are, well, problems – messy and 
incomplete.  http://www.ted.com/talks/dan_meyer_math_curriculum_makeover.html 
His blog is http://blog.mrmeyer.com/  Explains why I give some of the homework 
assignments in such a format. 

 

 Linear Regression "By Hand" from a Wired blog, 
http://www.wired.com/wiredscience/2011/01/linear-regression-by-hand/ 

 

 Using stats in unexpected ways: 
www.wired.com/magazine/2011/01/ff_lottery/all/1 

 

 Vi Hart's blog is great for math stuff  http://vihart.com/ 
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These notes accompany the textbook used in the class, Applied Statistics for Business and 
Economics, David Doane and Lori Seward, 3rd edition, McGraw Hill. 
 
If you begin a love affair with Statistics and want to read more, here are some suggestions: 

 Leonard Mlodinow, Drunkard's Walk 

 Edward R. Tufte The Visual Display of Quantitative Information, Visual Explanations: 
Images and Quantities, Evidence and Narrative (in library) 

 Howard Wainer, Graphic Discovery: A Trout in the Milk and Other Visual Adventures 

 David Salsburg, Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth 
Century 

 James Stock & Mark Watson, Introduction to Econometrics and Peter Kennedy, A Guide 
to Econometrics 

 Jane E. Miller, The Chicago Guide to Writing about Numbers (in library)  

 John W. Tukey, Exploratory Data Analysis (in library) 

 Stephen Stigler, Statistics on the Table (in library) and The History of Statistics: The 
Measurement of Uncertainty before 1900 (in library) 

 Dierdre McCloskey , Economical Writing and The Rhetoric of Economics (in library) 

 

The Challenge 
 

Humans are bad at statistics, we're just not wired to think this way.  Despite – or maybe, 
because of this, statistical thinking is enormously powerful and it can quickly take over your 
life.  Once you begin thinking like a statistician you will begin to see statistical applications to 
even your most mundane activities. 
 
Not only are humans bad at statistics but statistics seem to interfere with essential human 
feelings such as compassion. 
 

"A study by Small, Loewenstein, and Slovic (2007) … gave people leaving a psychological experiment the 
opportunity to contribute up to $5 of their earnings to Save the Children. In one condition respondents 
were asked to donate money to feed an identified victim, a seven-year-old African girl named Rokia. 
They contributed more than twice the amount given by a second group asked to donate to the same 
organization working to save millions of Africans from hunger (see Figure 2). A third group was asked to 
donate to Rokia, but was also shown the larger statistical problem (millions in need) shown to the second 
group. Unfortunately, coupling the statistical realities with Rokia’s story significantly reduced the 
contributions to Rokia. 

 



A follow-up experiment by Small et al. initially primed study participants either to feel (“Describe your 
feelings when you hear the word ‘baby,’” and similar items) or to do simple arithmetic calculations. 
Priming analytic thinking (calculation) reduced donations to the identifiable victim (Rokia) relative to the 
feeling-based thinking prime. Yet the two primes had no distinct effect on statistical victims, which is 
symptomatic of the difficulty in generating feelings for such victims." (Paul Slovic, Psychic Numbing and 
Genocide, November 2007, Psychological Science Agenda, http://www.apa.org/science/psa/slovic.html) 

 
Yet although we're not naturally good at statistics, it is very important for us to get better.  
Consider all of the people who play the lottery or go to a casino, sacrificing their hard-earned 
money.  (Statistics questions are often best illustrated by gambling problems, in fact the 
science was pushed along by questions about card games and dice games.) 
 
Google, one of the world's most highly-regarded companies, famously uses statistics to guide 
even its smallest decisions: 

Substantial benefits arise once you learn stats.  Specifically, if so many people are bad at it 
then gaining a skill in Statistics gives you a scarce ability – and, since Adam Smith, economists 
have known that scarcity brings value.  (And you might find it fun!) 
 
Leonard Mlodinow, in his book The Drunkard's Walk, attributes the fact that we humans are 
bad at statistics as due to our need to feel in control of our lives.  We don't like to acknowledge 
that so much of the world is genuinely random and uncontrollable, that many of our successes 
and failures might be due to chance.  When statisticians watch games, we don't believe 
sportscasters who discuss "they just wanted it more" or other un-observable factors; we just 
believe that one team or the other got lucky. 
 
As an example, suppose we were to have 1000 people toss coins in the air – those who get 
"heads" earn a dollar, and the game is repeated 10 times.  It is likely that at least one person 
would flip "heads" all ten times.  That person might start to believe, "Hey, I'm a good heads-
tosser, I'm really good!"  Somebody else is likely to have tossed "tails" ten times in a row – that 
person would probably be feeling stupid.  But both are just lucky.  And both have the same 
50% chance of making "heads" on the next toss.  Einstein famously said that he didn't like to 
believe that God played dice with the universe but many people look to the dice to see how 
God plays them. 
 



Of course we struggle to exert control over our lives and hope that our particular choices can 
determine outcomes.  But, as we begin to look at patterns of events due to many people's 
choices, then statistics become more powerful and more widely applicable.  Consider a 
financial market: each individual trade may be the result of two people each analyzing the 
other's offers, trying to figure out how hard to press for a bargain, working through reams of 
data and making tons of calculations.  But in aggregate, financial markets move randomly – if 
they did not then people could make a lot of money exploiting the patterns.  Statistics help us 
both to see patterns in data that would otherwise see random and also to figure out when the 
patterns we observe are due to random chance.  Statistics is an incredibly powerful tool. 
 
Economics is a natural fit for statistical analysis since so much of our data is quantitative.  
Econometrics is the application of statistical analyses to economic problems.  In the words of  
John Tukey, a legendary pioneer, we believe in the importance of "quantitative knowledge – a 
belief that most of the key questions in our world sooner or later demand answers to by how 
much? rather than merely to in which direction?" 
 
This class 
In my experience, too many statistics classes get off to a slow start because they build up 
gradually and systematically.  That might not sound like a bad thing to you, but the problem is 
that you, the student, get answers to questions that you haven't yet asked.  It can be more 
helpful to jump right in and then, as questions arise, to answer those at the appropriate time.  
So we'll spend a lot of time getting on the computer and actually doing statistics.  
 
So the class will not always closely follow the textbook, particularly at the beginning.  We will 
sometimes go in circles, first giving a simple answer but then returning to the most important 
questions for more study.  The textbook proceeds gradually and systematically so you should 
read that to ensure that you've nailed down all of the details. 
 
Statistics and econometrics are ultimately used for persuasion.  First we want to persuade 
ourselves whether there is a relationship between some variables.  Next we want to persuade 
other people whether there is such a relationship.  Sometimes statistical theory can become 
quite Platonic in insisting that there is some ideal coefficient or relationship which can be 
discerned.  In this class we will try to keep this sort of discussion to a minimum while keeping 
the "persuasion" rationale uppermost. 
  



Step One: Know Your Data 
 

The first step in any examination of data is to know that data – where did it come from?  Who 
collected it?  What is the sample of?  What is being measured?  Sometimes you'll find people 
who don't even know the units! 
 
Then think about the units you actually want and make the necessary transformations.  
Typically we compare rates not just levels; we usually want to be able to ask a question like, "is 
that big or small?"  Considering your classes, would you like to know how many A grades were 
earned in last year's class, or what fraction of the students got A grades?   If you were told that 
18 students got A grades, and you wanted to know if that were big or small, you would 
immediately have to ask, "how big was the class?"  Was it a 300-person lecture hall or a 20-
person seminar?  The rate or fraction of A grades bundles up these two pieces of information 
into something that is more understandable. 
 
Economists and business people often get figures in various units: levels, changes, percent 
changes (growth), log changes, annualized versions of each of those.  We need to be careful 
and keep the differences all straight. 
 
Annualized Data 
At the simplest level, consider if some economic variable is reported to have changed by 100 in 
a particular quarter.  As we make comparisons to previous changes, this is straightforward (was 
it more than 100 last quarter? Less?).  But this has at least two possible meanings – only the 
footnotes or prior experience would tell the difference.  It could imply that the actual change 
was 100, so if the item continued to change at that same rate throughout the year, it would 
change by 400 after 4 quarters.  Or it could imply that the actual change was 25 and if the item 
continued to change at that same rate it would be 100 after 4 quarters – this is an annualized 
change.  Most GDP figures are annualized.  But you'd have to read the footnotes to make sure. 
 
This distinction holds for growth rates as well.  But annualizing growth rates is a bit more 
complicated than simply multiplying.  (These are also distinct from year-on-year changes.) 
 
CPI changes are usually reported as monthly changes (not annualized).  GDP growth is usually 
annualized.  So a 0.2% change in the month's CPI and a 2.4% growth in GDP are actually the 
same!  Any data report released by a government statistical agency should carefully explain if 
any changes are annualized or "at an annual rate." 
 
Seasonal adjustments are even more complicated, where growth rates might be reported as 
relative to previous averages.  We won't yet get into that. 
 
To annualize growth rates, we start from the original data (for now assume it's quarterly not 
monthly): suppose some economic series rose from 1000 in the first quarter to 1005 in the 
second quarter.  This is a 0.5% growth from quarter to quarter (=0.005).  To annualize that 



growth rate, we ask what would be the total growth, if the series continued to grow at that 
same rate for four quarters. 
 
This would imply that in the third quarter the level would be 1005*(1 + 0.005) =1005*(1.005) = 
1000*(1.005)*(1.005) = 1000*(1.005)2; in the fourth quarter the level would be 1000*(1.005) 
*(1.005)*(1.005) = 1000*(1.005)3; and in the first quarter of next year the level would be 
1000*(1.005) *(1.005) *(1.005) *(1.005) = 1000*(1.005)4= 1020.2 which is a little more than 2%.  
 
This would mean that the annualized rate of growth (for an item reported quarterly) would be 
the final value minus the beginning value, divided by the beginning value, which is  

 
 

4

41000 1.005 1000
1.005 1

1000


  .   

 
Generalized, this means that quarterly growth is annualized by taking the single-quarter 

growth rate, g , and converting this to an annualized rate of  
4

1 1g  . 

 
If this were monthly then the same sequence of logic would get us to insert a 12 instead of a 4 
in the preceding formula.  If the item is reported over t  time periods, then the annualized rate 

is  1 1
t

g  .  (Daily rates could be calculated over 250 business days or 360 "banker's days" or 

365/366 calendar days per year.) 
 
The year-on-year growth rate is different.  This looks back at the level from one year ago and 
finds the growth rate relative to that level. 
 
Each method has its weaknesses.  Annualizing needs the assumption that the growth could 
continue at that rate throughout the year – not always true (particularly in finance, where a 
stock could bounce by 1% in a day but it is unlikely to be up by over 250% in a year – there will 
be other large drops).  Year-on-year changes can give a false impression of growth or decline 
after the change has stopped. 
 
For example, if some item the first quarter of last year was 50, then it jumped to 60 in the 
second quarter, then stayed constant at 60 for the next two quarters, then the year-on-year 
change would be calculated as 20% growth even after the series had flattened. 
 
Sometimes several measures are reported, so that interested readers can get the whole story.  
For examples, go to the US Economics & Statistics Administration, http://www.esa.doc.gov/, 
and read some of the "Indicators" that are released.   
 
For example, on July 14, 2011, "The U.S. Census Bureau announced today that advance 
estimates of U.S. retail and food services sales for June, adjusted for seasonal 
variation and holiday and trading-day differences, but not for price changes, were $387.8 
billion, an increase of 0.1 percent (±0.5%) from the previous month, and 8.1 percent (±0.7%) 



above June 2010."  That tells you the level (not annualized), the monthly (not annualized) 
growth, and the year-0n-year growth.  The reader is to make her own inferences. 
 
GDP estimates are annualized, though, so we can read statements like this, from the BEA's 
July 29 release,  "Current-dollar GDP ... increased 3.7 percent, or $136.0 billion, in the second 
quarter to a level of $15,003.8 billion. "  The figure, $15 trillion, is scaled to an annual GDP 
figure; we wouldn't multiply by 4.  On the other hand, the monthly retail sales figures above 
are not multiplied by 12. 
 
So if, for instance, we wanted to know the fraction of GDP that is retail sales, we could NOT 
divide 387.8/15003.8 = 2.6%!  Instead either multiply the retail sales figure by 12 or divide the 
GDP figure by 12.  This would get 31%.  More pertinently, if we hear that government stimulus 
spending added $20 billion, we might want to try to figure out how much this helped the 
economy.  Again, dividing 20/15003.8 = 0.13% (13 bps) but this is wrong!  The $15tn is at an 
annual rate but the $20bn is not, so we've got to get the units consistent.  Either multiply 50 by 
4 or divide 15,003.8 by 4.  (This mistake has been made by even very smart people!) 
 
So don't make those foolish mistakes and know your data.  If you have a sample, know what 
the sample is taken from.  Often we use government data and just casually assume that, since 
the producers are professionals, that it's exactly what I want.  But "what I want" is not always 
"what is in the definition."  Much government data (we'll be using some of it for this class) is 
based on the Current Population Survey (CPS), which represents the civilian non-institutional 
population.  Since it's the main source of data on unemployment rates, it makes good sense to 
exclude people in the military (who have little choice about whether to go to work today) or in 
prison (again, little choice).  But you might forget this, and wonder why there are so few 
soldiers in the data that you're working with <forehead slap!>.   
 
So know your data.  Even if you're using internal company numbers, you've got to know what's 
being counted – when are sales booked?  Warehouse numbers aren't usually quite the same as 
accounting numbers. 
 

Show the Data 
 

One of the hottest fields currently is "Data Visualization."  This arises from two basic facts: 1. 
We're drowning in data; and 2. Humans have good eyes. 
 
We're drowning in data because increasing computing power makes so much more available to 
us.  Companies can now consider giving top executives a "dashboard" where, just like a driver 
can tell how fast the car is travelling right now, the executive can see how much profit is being 
made right now.  Retailers have automated scanners at the cash register and at the receiving 
bay doors; each store can figure out what's selling.  
 
The data piles up while nobody's looking at it.  An online store might generate data on the 
thousands of clicks simultaneously occurring, but it's probably just spooling onto some server's 



disk drive.  It's just like spy agencies that harvest vast amounts of communications (voice, 
emails, videos, pictures) but then can't analyze them. 
 
The hoped-for solution is to use our fundamental capacities to see patterns; convert machine 
data to visuals.  Humans have good eyes; we evolved to live in the East African plains, watching 
all around ourselves to find prey or avoid danger.  Modern people read a lot but that takes just 
a small fraction of the eye's nerves; the rest are peripheral vision.  We want to make full use of 
our input devices. 
 
But putting data into visual form is really tough to do well!  The textbook has many examples 
to help you make better charts.  Read Chapter 3 carefully.  The homework will ask you to try 
your hand at it. 
 

Histograms 
 

You might have forgotten about histograms.  A histogram shows the number (or fraction) of 
outcomes which fall into a particular bin.  For example, here is a histogram of scores on the 
final exam for a class that I taught: 

 
This histogram shows a great deal of information; more than just a single number could tell.  
(Although this histogram, with so many one- or two-step sizes, could be made much better.)   
 
Often a histogram is presented, as above, with blocks but it can just as easily be connected 
lines, like this: 
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The information in the two charts is identical. 
 
Histograms are a good way of showing how the data vary around the middle.  This information 
about the spread of outcomes around the center is very important to most human decisions – 
we usually don't like risk. 
 
Note that the choice of horizontal scaling or the number of bins can be fraught. 
 
For example consider a histogram of a student's grades.  If we leave in the A- and B+ grades, 
we would show a histogram like this: 

 
whereas by collapsing together the grades into A, B, and C categories we would get something 
more intelligible, like this: 
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. 
This shows the central tendency much better – the student has gotten many B grades and 
slightly more A grades than C grades.  The previous histogram had too many categories so it 
was difficult to see a pattern. 
 
The textbook has many more examples and suggestions as well as guides on what to avoid and 
how to improve your visual displays.  Read Chapters 2 and 3 of Doane & Seward carefully. 
 
 

Basic Concepts: Find the Center of the Data 
 

You need to know how to calculate an average (mean), median, and mode.  After that, we will 
move on to how to calculate measures of the spread of data around the middle, its variation. 
 
Average 
There are a few basic calculations that we start with.  You need to be able to calculate an 
average, sometimes called the mean. 
 
The average of some values, X, when there are N of them, is the sum of each of the values 

(index them by i) divided by N, so the average of X, sometimes denoted X , is 

 
1

1 N

i

i

X X
N 

  . 

 
The average value of a sample is NOT NECESSARILY REPRESENTATIVE of what actually 
happens.  There are many jokes about the average statistician who has 2.3 kids.  If there are 
100 employees at a company, one of whom gets a $100,000 bonus, then the average bonus 
was $1000 – but 99 out of 100 employees didn't get anything. 
 
A common graphical interpretation of an average value is to interpret the values as lengths 
along which weights are hung on a see-saw.  The average value is where a fulcrum would just 
balance the weights.  Suppose a student is calculating her GPA.  She has an A (worth 4.0), an 
A- (3.67), a B+ (3.33), a C (2.0) and one F (0) [she's having troubles!].  We could picture these as 
weights: 
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The weights "balance" at the average point (where (0 + 2 + 3.33 + 3.67 + 4)/5 = 2.6): 

 
 
So the "bonus" example would look like this, with one person getting $100,000 while the other 
99 get nothing: 
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Where there are actually 99 weights at "zero."  But even one person with such a long moment 
arm can still shift the center of gravity away. 
 
Bottom Line: The average is often a good way of understanding what happens to people 
within some group.  But it is not always a good way. 
 
Sometimes we calculate a weighted average using some set of weights, w, so 

 
1

n

weighted Average i i

i

X w X


 , where 
1

1
n

i

i

w


 . 

 
 
Your GPA, for example, weights the grades by the credits in the course.  Suppose you get a B 
grade (a 3.0 grade) in a 4-credit course and an A- grade (a 3.67 grade) in a 3-credit course; you'd 
calculate GPA by multiplying the grade times the credit, summing this, then dividing by the 
total credits: 

3 4 3.67 3 4 3
3 3.67 3.287

4 3 4 3 4 3
GPA

  
   

  
.   

So in this example the weights are 
1 2

4 3
,

4 3 4 3
w w 

 
. 

 
When an average is projected forward it is sometimes called the "Expected Value" where it is 
the average value of the predictions (where outcomes with a greater likelihood get greater 
weight).  This nomenclature causes even more problems since, again, the "Expected Value" is 
NOT NECESSARILY REPRESENTATIVE of what actually happens.   
 
To simplify some models of Climate Change, if there is a 10% chance of a 10° increase in 
temperature and a 90% chance of no change, then the calculated Expected Value is a 1° 
change – but, again, this value does not actually occur in any of the model forecasts. 
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For those of you who have taken calculus, you might find these formulas reminiscent of integrals – good for you!  But we won't 
cover that now.  But if you think of the integral as being just an extreme form o f a summation, so the formula has the same format. 

 
Median 
The median is another measure of what happens to a 'typical' person in a group; like the mean 
it has its limitations.  The median is the value that occurs in the 50th percentile, to the person 
(or occurrence) exactly in the middle.  If there are an odd number of outcomes, otherwise it is 
between the two middle ones. 
 
In the bonus example above, where one person out of 100 gets a $100,000 bonus, the median 
bonus is $0.  The two statistics combined, that the average is $1000 but the median is zero, can 
provide a better understanding of what is happening.  (Of course, in this very simple case, it is 
easiest to just say that one person got a big bonus and everyone else got nothing.  But there 
may be other cases that aren't quite so extreme but still are skewed.) 
 
Mode 
The mode is the most common outcome; often there may be more than one.  If there were a 
slightly more complicated payroll case, where 49 of the employees got zero bonus, 47 got 
$1000, and four got $13,250 each, the mean is the same at $1,000, the median is now equal to 
the mean [review those calculations for yourself!], but the mode is zero.  So that gives us 
additional information beyond the mean or median. 
 
 

Spread around the center 
 

Data distributions differ not only in the location of their center but also in how much spread or 
variation there is around that center point.  For example a new drug might promise an average 
of 25% better results than its competitor, but does this mean that 25% of patients improved by 
100%, or does this mean that everybody got 25% better?  It's not clear from just the central 
tendency.  But if you're the one who's sick, you want to know. 
 
This is a familiar concept in economics where we commonly assume that investors make a 
tradeoff between risk and return.  Two hedge funds might both have a record of 10% returns, 
but a record of 9.5%, 10%, and 10.5% is very different from a record of 0%, 10%, and 20%.  
(Actually a record of always winning, no matter what, distinguished Bernie Madoff's fund...) 
 
You might think to just take the average difference of how far observations are from the 
average, but this won't work.   
 
There's an old joke about the tenant who complains to the super that in winter his apartment is 
50° and in summer is 90° -- and the super responds, "Why are you complaining?  The 
apartment is a comfortable 70° on average!"  (So the tenant replies "I'm complaining because I have a 

squared error loss function!"  If you thought that was funny, you're a stats geek already!) 
 
The average deviation from the average is always zero.  Write out the formulas to see. 



The average of some N values, 1 2, , NX X X , is given by 
1
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i

i
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  .   

So what is the average deviation from the average,  
1

N
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 ?   

We know that  
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      and, since X is the same for every observation, 
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   , if we substitute back from the definition of X .  So  
1
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  .  We 

can't re-use the average.  So we want to find some useful, sensible function [or functions], 

 f  , such that  
1

0
N

i

i

f X X


  . 

 
Standard Deviation 
The most commonly reported measure of spread around the center is the standard deviation.  
This looks complicated since it squares the deviations and then takes the square root, but is 
actually quite generally useful. 
 
The formula for the standard deviation is a bit more complicated: 

 2

1

1
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n

i

i

s X X
n 

  . 

Before you start to panic, let's go through it slowly.  First we want to see how far each 
observation is from the mean, 

  iX X . 

If we were to just sum up these terms, we'd get nothing – the positive errors and negative 
errors would cancel out.   
 
So we square the deviations and get  

 2

1
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n

i
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X X


 , 

and then just divide by n to find the average squared error, which is known as the variance, 
which is 
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  . 

 

The standard deviation is the square root of the variance; 2

X X  2
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  . 

 
Of course you're asking why we bother to square all of the parts inside the summation, if we're 
only going to take the square root afterwards.  It's worthwhile to understand the rationale 
since similar questions will re-occur.  The point of the squared errors is that they don't cancel 



out.  The variance can be thought of as the average size of the squared distances from the 
mean.  Then the square root makes this into sensible units.  
 
The variance and standard deviation of the population divides by N; the variance and standard 
deviation of a sample divide by (N – 1).  This is referred to as a "degrees of freedom correction," 
referring to the fact that a sample, after calculating the mean, has lost one "degree of 
freedom," so the standard deviation has only (N – df) remaining.  You could worry about that 
difference or you could note that, for most datasets with huge N (like the ATUS with almost 
100,000), the difference is too tiny to worry about. 
 
Our notation generally uses Greek letters to denote population values and English letters for 
sample values, so we have  
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. 
 
 
As you learn more statistics you will see that the standard deviation appears quite often.  
Hopefully you will begin to get used to it. 
 

We could look at other functions of the distance of the data from the central measure,  f  , 

such that  
1

0
N

i

i

f X X


   -- for example, the mean of the absolute value, 
1

1 N

i

i

X X
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 .  By 

recalling the graphs of these two functions you can begin to appreciate how they differ:  
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So that squaring the difference counts large deviations very much worse than small deviations, 
whereas an absolute deviation does not.  So if you're trying to hit a central target, it might well 
make sense that wider and wider misses should be penalized worse, while tiny misses should 
be hardly counted.   
 
There is a relationship between the distance measure selected and the central parameter.  For 
example, suppose I want to find some number, Z, that minimizes a measure of distance of this 

number, Z, from each observations.  So I want to minimize 
1

1
( )

N

i

i

f X Z
N 

 .  If we were to use 

the absolute value function then setting Z to the median would minimize the distance.  If we 
use instead the squared function then setting Z to the average would minimize the distance.  
So there is an important connection between the average and the standard deviation, just as 
there is a connection between the median and the absolute deviation.  (Can you think of what distance 

measure is connected with the mode?)  
 
If you know calculus, you will understand why, in the age before computer calculations, 
statisticians preferred the squared difference to the absolute value of the difference.  If we look 
for an estimator that will minimize that distance, then in general in order to minimize 
something we will take its derivative.  But the derivative of the absolute value is undefined at 
zero, while the squared distance has a well-defined derivative. 
 
Sometimes you will see other measures of variation; the textbook goes through these 

comprehensively.  Note that the Coefficient of Variation, 
s

X
, is the reciprocal of the signal-to-

noise ratio.  This is an important measure when there is no natural or physical measure, for 
example a Likert scale.  If you ask people to rate beers on a scale of 1-10 and find that 
consumers prefer Stone's Ruination Ale to Budweiser by 2 points, you have no idea whether 2 
is a big or a small difference – unless you know how much variation there was in the data (i.e. 
the standard deviation).  On the other hand, if Ruination costs $2 more than Bud, you can 
interpret that even without a standard deviation. 
 

In finance, this signal/noise ratio is referred to as the Sharpe Ratio, 
fR r




, where R  are the 

average returns on a portfolio and 
fr  is the risk-free rate; the Sharpe Ratio tells the returns 

relative to risk. 
 

Sometimes we will use "Standardized Data," usually denoted as iZ , where the mean is 

subtracted and then we divide by the standard deviation, so i
i

X X
Z

s


 .  This is interpretable 

as measuring how many standard deviations from the mean is any particular observation.  This 
allows us to abstract from the particular units of the data (meters or feet; Celsius or Fahrenheit; 
whatever) and just think of them as generic numbers. 
 



 

Now Do It! 
 

We'll use data from the Census PUMS, on just people in New York City, to begin actually doing 
statistics using the analysis program called SPSS.  There are further lecture notes on each of 
those topics.  Read those carefully; you'll need them to do the homework assignment. 
 
Next: 

 on the PUMS data 

 on using SPSS (also videos) 

 Lecture Notes 2 
 
 


