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Regression to the Mean – OLS  
 

Example in class. 
 
The example is due to Kahneman, who describes having subjects toss two coins at a target. 
 
Here is the result: 

 
Note that the toss of blue and red chips (blue first, then red) exhibits regression towards the 
mean.  Does this imply learning?  (You can reverse the axes, put up a regression line showing 
that the second toss predicts the first...) 
 
Kahneman also gives this example (discuss): 
"Highly intelligent women tend to marry men who are less intelligent than they are." 
 

Jumping into OLS 
 

(Chapter 12 of textbook) 
 
Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 
Students will be able to: 

 use a statistical analysis computer program to run regression 
 differentiate between the dependent and independent variables 
 explain the assumptions underlying linear regression and interpret the regression coefficients 
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 calculate and interpret the standard error of estimate and a confidence interval for a regression coefficient 
 differentiate between homoskedasticity and heteroskedasticity 

 
 
OLS is Ordinary Least Squares, which as the name implies is ordinary, typical, common – 
something that is widely used (and abused) in just about every economic analysis. 
 
We are accustomed to looking at graphs that show values of two variables and trying to 
discern patterns.  Consider these two graphs of financial variables. 
 
This plots the returns of Hong Kong's Hang Seng index against the returns of Singapore's 
Straits Times index (over the period from Jan 2, 1991 to Jan 31, 2006) 

 
 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) during 
1989-2004. 



 
You don't have to be a highly-skilled econometrician to see the difference in the relationships.  
It would seem reasonable that the Hong Kong and Singapore stock indexes are closely linked 
while the US stock index is not closely related to interest rates. 
 
So we want to ask, how could we measure these relationships?  Since these two graphs are 
rather extreme cases, how can we distinguish cases in the middle?  How can we try to guard 
against seeing relationships where, in fact, none actually exist?  We will consider each of these 
questions in turn. 
 
How can we measure the relationship? 
Facing a graph like the Hong Kong/Singapore stock indexes, we might represent the 
relationship by drawing a line, something like this: 



 
 
Now if this line-drawing were done just by hand, just sketching in a line, then different people 
would sketch different lines, which would be clearly unsatisfactory.  What is the process by 
which we sketch the line?   
 
Typically we want to find a relationship because we want to predict something, to find out 
that, if I know one variable, then how does this knowledge affect my prediction of some other 
variable.  We call the first variable, the one known at the beginning, X.  The variable that we're 
trying to predict is called Y.  So in the example above, the Singapore stock index is X and the 
Hong Kong index is Y.  The line that we would draw in the picture would represent our best 
guess of what Y would be, given our knowledge about X. 
 
This line is drawn to get the best guess "close to" the actual Y values – where by "close to" we 
actually minimize the average squared distance.  Why square the distance?  This is one 
question which we will return to, again and again; for now the reason is that a squared distance 
really penalizes the big misses.  If I square a small number, I get a bigger number.  If I square a 
big number, I get a HUGE number.  (And if I square a number less than one, I get a smaller 
number.)  So minimizing the squared distance will mean that I am willing to make a bunch of 



small errors in order to reduce a really big error.  This is why there is the "LS" in "OLS" -- 
"Ordinary Least Squares" finds the least squared difference. 
 
A computer can easily calculate a line that minimizes the squared distance between each Y 
value and the best prediction.  There are also formulas for it.  (We'll come back to the formulas; 

put a lightning bolt here to remind us: .) 
 
For a moment consider how powerful this procedure is.  A line that represents a relationship 
between X and Y can be entirely produced by knowing just two numbers: the y-intercept and 
the slope of the line.  In algebra class you probably learned the equation as: 

Y mX b   
where the slope is m  and the y-intercept is b .  When 0X   then Y b , which is the value of 
the line when the line intersects the Y-axis (when X is zero).  The y-intercept can be positive or 

negative or zero.  The slope is the value of 
Y

X




, which tells how much Y changes when X 

changes by one unit.  To find the predicted value of Y at any point we substitute the value of X 
into the equation.  Nobel laureate Chris Sims quite simply advocates that advances in science 
"are discoveries of ways to compress data ... with minimal loss of information." 
(Macroeconomics and Methodology, 1995). 
 
In econometrics we will typically use a different notation, 

 0 1Y X      

where now 0  is the y-intercept and the slope is 1 .  (Econometricians looooove Greek letters 

like beta, get used to it!) 
 
The relationship between X and Y can be positive or negative.  Basic economic theory says that 
we expect that the amount demanded of some item will be a positive function of income and a 

negative function of price (for a normal good).  We can easily have a case where 1 0  . 

 

If X and Y had no systematic relation, then this would imply that 1 0   (in which case, 0  is 

just the mean of Y).  In the 1 0   case, Y takes on higher or lower values independently of 

what is the level of X. 
 
This is the case for the S&P 500 return and interest rates: 



 
So there does not appear to be any relationship. 
 
Sidebar: 

There is another possible notation, that Y X   .  This is often heard in discussions of hedge funds or financial 

investing.  If X is the return on, say, the broad stock market (the S&P500, for example) and Y is the return of a hedge fund, then 

the hedge fund managers must make a case that they can provide "alpha" – that for their hedge fund 0  .  This implies 

that no matter what the market return is, the hedge fund will return better.  The other desirable case is for a hedge fund with 
beta near zero – which might seem odd at first.  But this provides diversification: a low beta means that the fund returns do not 
really depend on the broader market. 

 
Computer programs will easily compute this OLS line; even Excel will do it.  When you create 
an XY (Scatter) chart, then right-click on the data series, "Add Trendline" and choose "Linear" 
to get the OLS estimates.  
 
Lets fine up the notation a bit more: when we fit a line to the data, we do not always have Y 

exactly and precisely equal to 0 1X  .  Sometime Y is a bit bigger, sometimes a bit smaller.  

The difference is an error in the model.  So we should actually write 0 1Y X      where 

epsilon is the error between the model value of Y and the actual observed value. 
 



Another Example 
This representation is powerful because it neatly and compactly summarizes a great deal of 
underlying variation.  Consider the case of looking at the time that people spend eating and 
drinking, as reported in the ATUS data; we want to see if there is a relationship with the 
person's age.  If we compute averages for each age (average time spent by people who are 18 
years old, average time spent by people who are 19 years old, 20 years old, etc – all the way to 
85 years old) along with the standard errors we get this chart: 

 
There seems to be an upward trend although we might distinguish a flattening of time spent, 
between ages 30 and 60.  But all of this information takes a table of numbers with 67 rows and 
4 columns s0 268 separate numbers!  If we represent this as just a line then we need just two 
numbers, the intercept and the slope.  This also makes more effective use of the available 
information to "smooth out" the estimated relationship.  (For instance, there is a leap up for 
29-year-olds but then a leap back down – do we really believe that there is really that sort of 
discontinuity or do we think this could just be the randomness of the data?  A fitted line would 
smooth out that bump.) 
 
How can we distinguish cases in the middle? 
Hopefully you've followed along so far, but are currently wondering: How do I tell the 
difference between the Hong Kong/Singapore case and the S&P500/Interest Rate case?  
Maybe art historians or literary theorists can put up with having "beauty" as a determinant of 
excellence, but what is a beautiful line to econometricians? 
 
There are two separate answers here, and it's important that we separate them.  Many 
analyses muddle them up.  One answer is simply whether the line tells us useful information.  
Remember that we are trying to estimate a line in order to persuade (ourselves or someone 
else) that there is a useful relationship here.  And "useful" depends crucially upon the context.  
Sometimes a variable will have a small but vital relationship; others may have a large but much 
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less useful relation.  To take an example from macroeconomics, we know that the single 
largest component of GDP is consumption, so consumption has a large impact on GDP.  
However US consumption is based on the individual choices of 300m people, so it's difficult for 
policymakers to have a direct and immediate effect upon it.  Beginning students are often 
surprised to discover how important an effect inventory investment has historically had on US 
GDP growth, even though inventory adjustments are a tiny slice of GDP.  The Fed's actions 
have a tiny direct effect yet we all agree that they are very important because this tiny effect 
may help the economy in huge ways. 
 
This first question, does the line persuade, is always contingent upon the problem at hand; 
there is no easy answer.  You can only learn this by reading other people's analyses and by 
practicing on your own.  It is an art form to be learned, but the second part is science. 
 
The economist Dierdre McCloskey has a simple phrase, "How big is big?"  This is influenced by 
the purpose of the research and the aim of discovering a relation: if we want to control some 
outcome or want to predict the value of some unknown variable or merely to understand a 
relationship. 
 
The first question, about the usefulness and persuasiveness of the line, also depends on the 
relative sizes of the modeled part of Y and the error.  Returning to the notation introduced, this 

means the relative sizes of the predictable part of Y, 0 1X  , versus the size of  .  As epsilon 

gets larger relative to the predictable part, the usefulness of the model declines. 
 
The second question, about how to tell how well a line describes data, can be answered directly 
with statistics, and it can be answered for quite general cases. 
 
How can we try to guard against seeing relationships where, in fact, none actually exist? 
To answer this question we must think like statisticians, do mental handstands, look at the 
world upside-down. 
 
Remember, the first step in "thinking like a statistician" is to ask, What if there were actually no 

relationship; zero relationship (so 1 0  )?  What would we see? 

 
If there were no relationship then Y would be determined just by random error, unrelated to X.  
But this does not automatically mean that we would estimate a zero slope for the fitted line.  In 
fact we are highly unlikely to ever estimate a slope of exactly zero.  We usually assume that the 
errors are symmetric, i.e. if the actual value of Y is sometimes above and sometimes below the 
modeled value, without some oddball skew up or down.  So even in a case where there is 
actually a zero relationship between Y and X, we might see a positive or negative slope.  
 
We would hope that these errors in the estimated slope would be small – but, again, "how 
small is small?"  
 



Let's take another example.  Suppose that the true model is Y = 10 + 2X (so 0 10   and 1 2 

).  But of course there will be an error; lets consider a case where the error is pretty large.  In 
this case we might see a set of points like this: 

 
When we estimate the slope for those dots, we would find not 2 but, in this case (for this 
particular set of errors), 1.61813. 
 
Now we consider a rather strange thing: suppose that there were actually zero relationship 

between X and Y (so that actually 1 0  ).  Next suppose that, even though there were actually 

zero relation, we tried to plot a line and so calculated our estimate of 1 .  To give an example, 

we would have the computer calculate some random numbers for X and Y values, then 
estimate the slope, and we would find 1.45097.  Do it again, and we might get 0.36131.  Do it 
10,000 times (not so crazy, actually – the computer does it in a couple of seconds), and we'd 
find the following range of values for the estimated slope: 



 
So our estimated slope from the first time, 1.61813, is "pretty far" from zero.  How far?  The 
estimated slope is farther than just 659 of those 10,000 tries, which is 6.59%. 
 
So we could say that, if there were actually no relationship between X and Y, but we incorrectly 
estimated a slope, then we'd get something from the range of values shown above.  Since we 
estimated a value of 1.61813, which is farther from zero than just 6.59% if there were actually 
no relationship, we might say that "there is just a 6.59% chance that X and Y could truly be 
unrelated but I'd estimate a value of 1.61813." [This is all based on a simple program in Matlab, emetrics1.m] 
 
Now this is a more reasonable measure: "What is the chance that I would see the value, that 
I've actually got, if there truly were no relationship?"  And this percentage chance is relevant 
and interesting to think about. 
 
This formalization is "hypothesis testing".  We have a hypothesis, for example "there is zero 
relation between X and Y," which we want to test.  And we'd like to set down rules for making 
decisions so that reasonable people can accept a level of evidence as proving that they were 
wrong.  (An example of not accepting evidence: the tobacco companies remain highly 
skeptical of evidence that there is a relationship between smoking and lung cancer.  Despite 
what most researchers would view as mountains of evidence, the tobacco companies insist 
that there is some chance that it is all just random.  They're right, there is "some chance" – but 
that chance is, by now, probably something less than 1 in a billion.)  Most empirical research 
uses a value of 5% -- we want to be skeptical enough that there is only a 5% chance that there 
might really be no relation but we'd see what we saw.  So if we went out into the world and did 
regressions on randomly chosen data, then in 5 out of 100 cases we would think that we had 
found an actual relation.  It's pretty low but we still have to keep in mind that we are fallible, 
that we will go wrong 5 out of 100 (or 1 in 20) times. 
 



Under some general conditions, the OLS slope coefficient will have a normal distribution -- not 
a standard normal, though, it doesn't have a mean of zero and a standard deviation of one. 
 
However we can estimate its standard error and then can figure out how likely it is, that the 
true mean could be zero, but I would still observe that value. 
 

This just takes the observed slope value, call it 1̂  (we often put "hats" over the variables to 

denote that this is the actual observed value), subtract the hypothesized mean of zer0, and 
divide by the standard error: 

 
   

1 1

1 1

ˆ ˆ0

se se

 

 


  

We call this the "t-statistic".  When we have a lot of observations, the t-statistic has 
approximately a standard normal distribution with zero mean and standard deviation of one.   
 
For the careful students, note that the t-statistic actually has a t-distribution, which has a 
shape that depends on the number of observations used to construct it (the degrees of 
freedom).  When the number of degrees of freedom is more than 30 (which is almost all of the 
time), the t-distribution is just about the same as a normal distribution.  But for smaller values 
the t-distribution has fatter tails. 
 
The t-statistic allows us to calculate the probability that, if there were actually a zero 

relationship, I might actually observe a value as extreme as 1̂ .  By convention we look at 

distance either above or below zero, so we want to know the probability of seeing a value as far 

from zero as either 1̂  or 1̂ .  If 1̂  were equal to 1, then this would be: 

 



while if 1̂  were another value, it would be: 

 
From working on the probabilities under the standard normal, you can calculate these areas for 

any given value of 1̂ . 

 
In fact, these probabilities are so often needed, that most computer programs calculate them 
automatically – they're called "p-values".  The p-value gives the probability that the true 
coefficient could be zero but I would still see a number as extreme as the value actually 
observed.  By convention we refer to slopes with a p-value of 0.05 or less (less than 5%) as 
"statistically significant". 
 
(We can test if coefficients are different from other values than just zero, but for now that is the most common so we 
focus on it.) 

 
Confidence Intervals 
There is another way of looking at statistical significance.  We just reviewed the procedure of 
taking the observed value, subtracting off the mean, dividing by the standard error, and then 
comparing the calculated t-statistic against a standard normal distribution. 
 
But we could do it backwards, too.  We know that the standard normal distribution has some 
important values in it, for example the values that are so extreme, that there is just a 5% 
chance that we could observe what we saw, yet the true value were actually zero.  This 5% 
critical value is just below 2, at 1.96.  So if we find a t-statistic that is bigger than 1.96 (in 
absolute value) then the slope would be "statistically significant"; if we find a t-statistic that is 
smaller than 1.96 (in absolute value) then the slope would not be "statistically significant".  We 
can re-write these statements into values of the slope itself instead of the t-statistic. 



 
We know from above that 

   
1 1

1 1

ˆ ˆ0
t

se se

 

 


  , 

and we've just stated that the slope is not statistically significant if: 

1.96t  . 

This latter statement is equivalent to: 
1.96 1.96t    

Which we can re-write as: 

 
1

1

ˆ
1.96 1.96

ˆse




    

Which is equivalent to: 

     1 1 1
ˆ ˆ ˆ1.96 1.96se se      

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of 
zero, then the slope is not statistically significant; if we observe a slope farther from zero than 
1.96 standard errors, then the slope is statistically significant. 
 
This is called a "95% Confidence Interval" because this shows the range within which the 
observed values would fall, 95% of the time, if the true value were zero.  Different confidence 
intervals can be calculated with different critical values: a 90% Confidence Interval would need 
the critical value from the standard normal, so that 90% of the probability is within it (this is 
1.64). 
 
 
 

Interpretation 
 

In many arguments, it is important show that a certain estimator is statistically significantly 
different from zero.  But that mere fact does not "prove" the argument and you should not be 
fooled into believing otherwise.  It is one link in a logical chain but any chain is only as strong as 
its weakest link.  If there is strong statistical significance then this means one link of the chain is 
strong, but if the rest of the argument is held together by threads it will not support any 
weight.  As a general rule, you will rarely use a word like "prove" if you want to be precise 
(unless you're making a mathematical proof).  Instead, phrases like "consistent with the 
hypothesis" or "inconsistent with the hypothesis" are better, since they remind the reader of 
the linkage: the statistics can strengthen or weaken the argument but they are not a 
substitute. 
 
Recall the use of evidence to make an argument: if you watch a crime drama on TV you'll see 
court cases where the prosecutor shows that the defendant does not have an alibi for the time 
the crime was committed.  Does that mean that the defendant is guilty?  Not necessarily – only 



that the defendant cannot be proven innocent by demonstrating that they were somewhere 
else at the time of the crime. 
 
You could find statistics to show that there is a statistically significant link between the time on 
the clock and the time I start lecture.  Does that mean that the clock causes me to start talking?  
(If the clock stopped, would there be no more lecture?) 
 
There are millions of examples.  In the ATUS data, we see that people who are not working 
have a statistically significant increase in time on religious activities.  We find a statistically 
significant negative correlation between the time that people spend on religious activities and 
their income. Do these mean that religion causes people to be poorer?  (We could go on, 
comparing the income of people who are unusually devout, perhaps finding the average 
income for quartiles or deciles of time spent on religious activity.)  Of course that's a ridiculous 
argument and no amount of extra statistics or tests can change its essentially ridiculous nature!  
If someone does a hundred statistical tests of increasing sophistication to show that there is 
that negative correlation, it doesn't change the essential part of the argument.  The conclusion 
is not "proved" by the statistics.  The statistics are "consistent with the hypothesis" or "not 
inconsistent with the hypothesis" that religion makes people poor.  If I wanted to argue that 
religion makes people wealthy, then these statistics would be inconsistent with that 
hypothesis. 
 
Generally two variables, A and B, can be correlated for various reasons.  Perhaps A causes B; 
maybe B causes A.  Maybe both are caused by some other variable.  Or they each cause the 
other (circular causality).  Or perhaps they just randomly seem to be correlated.  Statistics can 
cast doubt on the last explanation but it's tough to figure out which of the other explanations is 
right. 
 

On Sampling 
 

All of these statistical results, which tell us that the sample average will converge to the true 
expected value, are extremely useful, but they crucially hinge on starting from a random 
sample --  just picking some observations where the decision on which ones to pick is done 
completely randomly and in a way that is not correlated with any underlying variable. 
 
For example if I want to find out data about a typical New Yorker, I could stand on the street 
corner and talk with every tenth person walking by – but my results will differ, depending on 
whether I stand on Wall Street or Canal Street or 42nd Street or 125th Street or 180th Street!  
The results will differ depending on whether I'm doing this on Friday or Sunday; morning or 
afternoon or at lunchtime.  The results will differ depending on whether I sample in August or 
December.  Even more subtly, the results will differ depending on who is standing there asking 
people to stop and answer questions (if the person doing the sample is wearing a formal suit or 
sweatpants, if they're white or black or Hispanic or Asian, if the questionnaire is in Spanish or 
English, etc). 
 



In medical testing the gold standard is "randomized double blind" where, for example, a group 
of people all get pills but half get a placebo capsule filled with sugar while the other half get the 
medicine.  This is because results differ, depending on what people think they're getting; 
evaluations differ, depending on whether the examiner thinks the test was done or not.  (One 
study found that people who got pills that they were told were expensive reported better 
results than people who got pills that were said to be cheap – even though both got placebos.) 
 
Getting a true random sample is tough.  Randomly picking telephone numbers doesn't do it 
since younger people are more likely to have only a mobile number not a land line and poorer 
households may have more people sharing a single land line.  Online polls aren't random (as a 
general rule, never believe an online poll about anything).  Online reviews of a product 
certainly aren't random.  Government surveys such as the ones we've used are pretty good – 
some smart statisticians worked very hard to ensure that they're a random sample.  But even 
these are not good at estimating, say, the fraction of undocumented immigrants in a 
population. 
 
There are many cases that are even subtler.  This is why most sampling will start by reporting 
basic demographic information and comparing this to population averages.  One of the very 
first questions to be addressed is, "Are the reported statistics from a representative sample?" 
 

On Bootstrapping 
 

Recall the whole rationale for our method of hypothesis testing.  We know that, if some 
average were truly zero, it would have a normal distribution (if enough observations; otherwise 
a t distribution) around zero.  It would have some standard error (which we try to estimate).  
The mean and standard error are all we need to know about a normal distribution; with this 
information we can answer the question: if the mean were really zero, how likely would it be, 
to see the observed value?  If the answer is "not likely" then that suggests that the hypothesis 
of zero mean is incorrect; if the answer is "rather likely" then that does not reject the null 
hypothesis. 
 
This depends on us knowing (somehow) that the mean has a normal distribution (or a t 
distribution or some known distribution).  Are there other ways of knowing?  We could use 
computing power to "bootstrap" an estimate of the significance of some estimate. 
 
This "bootstrapping" procedure was done in a previous lecture note, on polls of the household 
income. 
 
Although differences in averages are distributed normally (since the averages themselves are 
distributed normally, and then linear functions of normal distributions are normal), we might 
calculate other statistics for which we don't know the distributions.  Then we can't look up the 
values on some reference distribution – the whole point of finding Z-statistics is to compare 
them to a standard normal distribution.  For instance, we might find the medians, and want to 
know if there are "big" differences between medians. 



 
Follow the same basic procedure: take the whole dataset, treat it as if it were the population, 
and sample from it.  Calculate the median of each sample.  Plot these; the distribution will not 
generally have a Normal distribution but we can still calculate bootstrapped p-values. 
 
For example, suppose I have a sample of 100 observations with a standard error equal to 1 
(makes it easy; i.e. the standard error is 10 and 10/sqrt(100) = 1) and I calculate that the average 
is 1.95.  Is this "statistically significantly" different from zero? 
 
One way to answer this is to use the computer to create lots and lots of samples, from a 
population with a zero mean and standard error of 1, and then count up how many are farther 
from zero than 1.95.  Or we can use the Standard Normal distribution to calculate the area in 
both tails beyond 1.95 to be 5.12%.  When I bootstrapped values I got answers pretty close 
(within 10 bps) for 10,000 simulations.  More simulations would get more precise values.  
 
So let's try a more complicated situation.  Imagine two distributions have the same mean; 
what is the distribution of median differences?  I get this histogram of median differences: 

 
So clearly a value beyond about 0.15 would be pretty extreme and would convince me that the 
real distributions do not have the same median.  So if I calculated a value of -0.17, this would 
have a low bootstrapped p-value. 



 
 
 
 
Details: 

- statistical significance for a univariate regression is the same as overall regression 
significance – if the slope coefficient estimate is statistically significantly different from 
zero, then this is equivalent to the statement that the overall regression explains a 
statistically significant part of the data variation. 

- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

- There are important assumptions about the regression that must hold, if we are to 
interpret the estimated coefficients as anything other than within-sample descriptors: 

o X completely specifies the causal factors of Y (nothing omitted) 
o X causes Y in a linear manner 
o errors are normally distributed 
o errors have same variance even at different X (homoskedastic not 

heteroskedastic) 
o errors are independent of each other 

- Because OLS squares the residuals, a few oddball observations can have a large impact 
on the estimated coefficients, so must explore 

 
 

 Points: 
Calculating the OLS Coefficients 
The formulas for the OLS coefficients have several different ways of being written.  For just 
one X-variable we can use summation notation (although it's a bit tedious).  For more variables 
the notation gets simpler by using matrix algebra. 

 

The basic problem is to find estimates of 0 and 1 to minimize the error in 0 1i i iy X e    . 

 
The OLS coefficients are found from minimizing the sum of squared errors, where each error is 

defined as 0 1i i ie y X     so we want to  
0 1 0 1
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basic calculus then you understand that you find the minimum point by taking the derivative 

with respect to the control variables, so differentiate with respect to 0 and 1.  After some 

tedious algebra, find that the minimum value occurs when we use 0̂  and 1̂ , where: 

 1
1

2

1

( )( )
ˆ

( )

n

i i

i

n

i

i

X X y y

X X

 



 








 



 0 1
ˆ ˆY X   . 

 
With some linear algebra, we define the equations as y X e  , where y is a column vector, 
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, e is the same, 
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, X is a matrix with a first column of ones and then columns of 

each X variable, 
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, where there are k columns, and then 
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.  The 

OLS coefficients are then given as  
1ˆ X X X y


  . 

 
But the computer does the calculations so you only need these if you go on to become an 
econometrician. 
 
 
To Recap: 

 A zero slope for the line is saying that there is no relationship. 

 A line has a simple equation, that Y = 0 + 1X  

 How can we "best" find a value of ? 

 We know that the line will not always fit every point, so we need to be a bit more careful 
and write that our observed Y values, Yi (i=1, …, N), are related to the X values, Xi, as: Yi 

= 0 + 1Xi + ui.  The ui term is an error – it represents everything that we haven't yet 

taken into consideration. 

 Suppose that we chose values for 0 and 1 that minimized the squared values of the 

errors.  This would mean  
0 1 0 1
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, ,
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min min
N N

i i i

i i

u Y X
   

 
 

    .  This will generally give 

us unique values of  (as opposed to the eyeball method, where different people can 

give different answers). 

 The 0 term is the intercept and the 1 term is the slope, 
dY

dX
. 

 These values of  are the Ordinary Least Squares (OLS) estimates.  If the Greek letters 

denote the true (but unknown) parameters that we're trying to estimate, then denote 

0̂  and 1̂  as our estimators that are based on the particular data.  We denote ˆiY  as the 

predicted value of what we would guess Yi would be, given our estimates of 0 and 1, 

so that 0 1
ˆ ˆˆ

i iY X   .   



 There are formulas that help people calculate 0̂  and 1̂  (rather than just guessing 

numbers); these are: 
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0 1
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 Why OLS?  It has a variety of desirable properties, if the data being analyzed satisfy 
some very basic assumptions.  Largely because of this (and also because it is quite easy 
to calculate) it is widely used in many different fields.  (The method of least squares was 
first developed for astronomy.) 

 OLS requires some basic assumptions: 
o The conditional distribution of ui given Xi has a mean of zero.  This is a 

complicated way of saying something very basic: I have no additional 
information outside of the model, which would allow me to make better 
guesses.  It can also be expressed as implying a zero correlation between Xi and 
ui.  We will work up to other methods that incorporate additional information. 

o The X and Y are i.i.d.  This is often not precisely true; on the other hand it might 
be roughly right, and it gives us a place to start. 

o Xi and ui have fourth moments.  This is technical and broadly true, whenever the 
X and Y data have a limit on the amount of variation, although there might be 
particular circumstances where it is questionable (sometimes in finance). 

 These assumptions are costly; what do they buy us?  First, if true then the OLS 
estimates are distributed normally in large samples.  Second, it tells us when to be 
careful. 

 Must distinguish between dependent and independent variables (no simultaneity). 

 So if these are true then the OLS are unbiased and consistent.  So 
0 0
ˆE    

 
 and 

1 1
ˆE    

 
.  The normal distribution, as the sample gets large, allows us to make 

hypothesis tests about the values of the betas.  In particular, if you look back to the 

"eyeball" data at the beginning, you will recall that a zero value for the slope, 1, is 

important.  It implies no relationship between the variables.  So we will commonly test 

the estimated values of  against a null hypothesis that they are zero. 

 There are formulas that you can use, for calculating the standard errors of the  

estimates, however for now there's no need for you to worry about them.  The 
computer will calculate them.  (Also note that the textbook uses a more complicated 
formula than other texts, which covers more general cases.  We'll talk about that later.) 

 Hypotheses about regression coefficients: t-stats, p-values, and confidence intervals 
again!  Usually two-sided (rarely one-sided). 



 Interpretation if X is a binary variable, a dummy, Di, equal to either one or zero.  So the 

model is 0 1i i iY D u     can be expressed as 0 1

0

1

0

i i

i

i i

u if D
Y

u if D

 



  
 

 
.  So this is 

just saying that Y has mean 0 + 1 in some cases and mean 0 in other cases.  So 1 is 

interpreted as the difference in mean between the two groups (those with D=1 and 
those with D=0).  Since it is the difference, it doesn't matter which group is specified as 
1 and which is 0 – this just allows measurement of the difference between them. 

o So regression can give same info as ANOVA 

 Other 'tricks' of time trends (& functional form) 
o If the X-variable is just a linear change [for example, (1,2,3,...25) or (1985, 

1986,1987,...2010)] then regressing a Y variable on this is equivalent to taking 
out a linear trend: the errors are the deviations from this trend. 

o examine errors to check functional form – e.g. height as a function of age works 
well for age < 12 but then breaks down 

o plots of x vs. (y and predicted-y) are useful as are plots of x vs e (note how to do 
these in SPSS) 

 In addition to the standard errors of the slope and intercept estimators, the regression 
line itself has a standard error.  One of the most commonly used is the R2 (displayed on 
the charts at the beginning automatically by SPSS).  This is the fraction of the variance 

in Y that is explained by the model so 0  R2  1.  Like ANOVA.  Bigger is usually better, 

although different models have different expectations (i.e. it's graded on a curve). 
 
 
 


