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Multiple Regression – more than one X variable 
Regressing just one variable on another can be helpful and useful (and provides a great 
graphical intuition) but it doesn't get us very far. 
 
Consider this example, using data from the March 2010 CPS.  We limit ourselves to only 
examining people with a non-zero annual wage/salary who are working fulltime (WSAL_VAL 

> 0 & HRCHECK = 2).  We look at the different wages reported by people who label 
themselves as white, African-American, Asian, Native American, and Hispanic.  There are 
62,043 whites, 9,101 African-Americans, 4476 Asians, 2149 Native Americans, and 12,401 
Hispanics in the data who fulfill this condition. 
 
The average yearly salary for whites is $50,782; for African-Americans it is $39,131; for Asians 
$57,541; for Native Americans $38,036; for Hispanics it is $36,678.  Conventional statistical 
tests find that these averages are significantly different.  Does this prove discrimination?  No; 
there are many other reasons why groups of people could have different incomes such as 
educational level or age or a multitude of other factors.  (But it is not inconsistent with a 
hypothesis of racism: remember the difference, when evaluating hypotheses, between 'not 
rejecting' or 'accepting').  We might reasonably break these numbers down further. 
 
These groups of people are different in a variety of ways.  Their average ages are different 
between Hispanics, averaging 38.72 years, and non-Hispanics, averaging 42.41 years. So how 
much of the wage difference, for Hispanics, is due to the fact that they're younger?  We could 
do an ANOVA on this but that would omit other factors. 
 
The populations also different in gender ratios.  For whites, 57% were male; for African-
Americans 46% were male; for Hispanics 59% were male.  Since gender also affects income, 
we might think some of the wage gap could be due, not to racial discrimination, but to gender 
discrimination. 
 
But then they're also different in educational attainment!  Among the Hispanic workers, 30% 
had not finished high school; for African-Americans 8.8% had not; for whites 9% had not 
finished with a diploma.  And 12% of whites had an advanced degree while 8.3% of African 
Americans and 4.2% of Hispanics had such credentials.  The different fractions in educational 
attainment add credibility to the hypothesis that not all racial/ethnic variation means 
discrimination (in the labor market, at least – there could be discrimination in education so 
certain groups get less or worse education). 
 



Finally they're different in what section of the country they live in, as measured by Census 
region. 
 
So how can we keep all of these different factors straight? 

Multiple Regression 
From the standpoint of just using SPSS, there is no difference for the user between a univariate 
and multivariate linear regression.  Again use "Analyze\ Regression\ Linear ..." 

but then add a bunch of variables to the "Independent(s)" box. 
 

In formulas, model has k explanatory variables for each of  1,2,i n  observations (must 

have n > k) 
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Each coefficient estimate, notated as ˆ
j , has standardized distribution as t with (n – k) 

degrees of freedom. 
 
Each coefficient represents the amount by which the y would be expected to change, for a 
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Note that you must be a bit careful specifying the variables.  The CPS codes educational 
attainment with a bunch of numbers from 31 to 46 but these numbers have no inherent 
meaning.  So too race, geography, industry, and occupation.  If a person graduates high school 
then their grade coding changes from 38 to 39 but this must be coded with a dummy variable.  
If a person moves from New York to North Dakota then this increases their state code from 36 
to 38; this is not the same change as would occur for someone moving from North Dakota to 
Oklahoma (40) nor is it half of the change as would occur for someone moving from New York 
to North Carolina (37).  Each state needs a dummy variable. 
 
A multivariate regression can control for all of the different changes to focus on each item 
individually.  So we might model a person's wage/salary value as a function of their age, their 
gender, race/ethnicity (African-American, Asian, Native American, Hispanic), if they're an 
immigrant, six educational variables (high school diploma, some college but no degree, 
Associate's in vocational field, Associate's in academic field, a 4-year degree, or advanced 
degree), if they're married or divorced/widowed/separated, if they're a union member, and if 
they're a veteran.  Results (from the sample above, of March 2010 fulltime workers with non-
zero wage), are given by SPSS as: 
 
 

Model Summary 



Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .454
a
 .206 .206 46820.442 

a. Predictors: (Constant), Veteran (any), African American, Education: 

Associate in vocational, Union member, Education: Associate in 

academic, Native American Indian or Alaskan or Hawaiian, Divorced or 

Widowed or Separated, Asian, Education: Advanced Degree, Hispanic, 

Female, Education: Some College but no degree, Demographics, Age, 

Education: 4-yr degree, Immigrant, Married, Education: High School 

Diploma 

 

ANOVA
b
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 4.416E13 17 2.598E12 1185.074 .000
a
 

Residual 1.704E14 77751 2.192E9   

Total 2.146E14 77768    

a. Predictors: (Constant), Veteran (any), African American, Education: Associate in vocational, 

Union member, Education: Associate in academic, Native American Indian or Alaskan or Hawaiian, 

Divorced or Widowed or Separated, Asian, Education: Advanced Degree, Hispanic, Female, 

Education: Some College but no degree, Demographics, Age, Education: 4-yr degree, Immigrant, 

Married, Education: High School Diploma 

b. Dependent Variable: Total wage and salary earnings amount - Person 

 

 

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10081.754 872.477  11.555 .000 

Demographics, Age 441.240 15.422 .104 28.610 .000 

Female -17224.424 351.880 -.163 -48.950 .000 

African American -5110.741 539.942 -.031 -9.465 .000 

Asian 309.850 819.738 .001 .378 .705 

Native American Indian or 

Alaskan or Hawaiian 

-4359.733 1029.987 -.014 -4.233 .000 



Hispanic -3786.424 554.159 -.026 -6.833 .000 

Immigrant -3552.544 560.433 -.026 -6.339 .000 

Education: High School 

Diploma 

8753.275 676.683 .075 12.936 .000 

Education: Some College but 

no degree 

15834.431 726.533 .116 21.795 .000 

Education: Associate in 

vocational 

17391.255 976.059 .072 17.818 .000 

Education: Associate in 

academic 

21511.527 948.261 .093 22.685 .000 

Education: 4-yr degree 37136.959 712.417 .293 52.128 .000 

Education: Advanced Degree 64795.030 788.824 .400 82.141 .000 

Married 10981.432 453.882 .102 24.194 .000 

Divorced or Widowed or 

Separated 

4210.238 606.045 .028 6.947 .000 

Union member -2828.590 1169.228 -.008 -2.419 .016 

Veteran (any) -2863.140 666.884 -.014 -4.293 .000 

a. Dependent Variable: Total wage and salary earnings amount - Person 

 

For the "Coefficients" table, the "Unstandardized coefficient B" is the estimate of ̂ , the "Std. 

Error" of the unstandardized coefficient is the standard error of that estimate,  ˆse  .  (In 

economics we don't generally use the standardized beta, which divides the coefficient estimate by 

the standard error of X.)  The "t" given in the table is the t-statistic, 
 

ˆ

ˆ
t

se




  and "Sig." is its p-

value – the probability, if the coefficient were actually zero, of seeing an estimate as large as 
the one that you got.  (Go back and review if you don't remember all of the details of this.) 
 
So see Excel sheet to show how to get predicted wages for different groups.  Can then 
interpret the residual from the regression. 
 

- Statistical significance of coefficient estimates is more complicated for multiple 
regression, we can ask whether a group of variables are jointly significant, which takes a 
more complicated test. 

 
The difference between the overall regression fit and the significance of any particular 
estimate is that a hypothesis test of one particular coefficient tests if that parameter is zero; is 



βi = 0?  This uses the t-statistic 
 

ˆ

ˆ
t

se




 and compares it to a Normal or t distribution 

(depending on the degrees of freedom).  The test of the regression significance tests if ALL of 
the slope coefficients are simultaneously zero; if β1 = β2 = β3 = ... = βK = 0.  The latter is much 
more restrictive.   
 

The predicted value of y is notated as ŷ , where 
0 1 1 2 2
ˆ ˆ ˆ ˆˆ

k ky x x x        . 
 
Its standard 

error is the standard error of the regression, given by SPSS as "Standard Error of the Estimate." 
 

The residual is 0 1 1 2 2
ˆ ˆ ˆ ˆˆ

k ky y y x x x          .  The residual of, for example, a wage
 

regression can be interpreted as the part of the wage that is not explained by the factors within 
the model. 
 
Residuals are often used in analyses of productivity.  Suppose I am analyzing a chain's stores to 
figure out which are managed best.  I know that there are many reasons for variation in 
revenues and cost so I can get data on those: how many workers are there and their pay, the 
location of the store relative to traffic, the rent paid, any sales or promotions going on, etc.  If I 

run a regression on all of those factors then I get an estimate, 
ŷ , of what profit would have 

been expected, given external factors.  Then the difference represents the unexplained or 
residual amount of variation: some stores would have been expected to be profitable and are 
indeed; some are not living up to potential; some would not have been expected to do so well 
but something is going on so they're doing much better than expected. 

 
 
Why do we always leave out a dummy variable?  Multicollinearity.   
 

 OLS basic assumptions: 
o The conditional distribution of ui given Xi has a mean of zero.  This is a 

complicated way of saying something very basic: I have no additional 
information outside of the model, which would allow me to make better 
guesses.  It can also be expressed as implying a zero correlation between Xi and 
ui.  We will work up to other methods that incorporate additional information. 

o The X and errors are i.i.d.  This is often not precisely true; on the other hand it 
might be roughly right, and it gives us a place to start. 

o X and errors don't have values that are "too extreme."  This is technical (about 
existence of fourth moments) and broadly true, whenever the X and Y data have 
a limit on the amount of variation, although there might be particular 
circumstances where it is questionable (sometimes in finance). 

 So if these are true then the OLS are unbiased and consistent.  So 
0 0
ˆE    

 
 and 

1 1
ˆE    

 
.  The normal distribution, as the sample gets large, allows us to make 

hypothesis tests about the values of the betas.  In particular, if you look back to the 



"eyeball" data at the beginning, you will recall that a zero value for the slope, 1, is 

important.  It implies no relationship between the variables.  So we will commonly test 

the estimated values of  against a null hypothesis that they are zero. 

 
 
Nonlinear Regression  
(more properly, How to Jam Nonlinearities into a Linear Regression) 
 

 X, X2, X3, … Xr 

 ln(X), ln(Y), both ln(Y) & ln(X) 

 dummy variables 

 interactions of dummies 

 interactions of dummy/continuous 

 interactions of continuous variables 
 
There are many examples of, and reasons for, nonlinearity.  In fact we can think that the most 
general case is nonlinearity and a linear functional form is just a convenient simplification 
which is sometimes useful.  But sometimes the simplification has a high price.  For example, 
my kids believe that age and height are closely related – which is true for their sample (i.e. 
mostly kids of a young age, for whom there is a tight relationship, plus 2 parents who are aged 
and tall).  If my sample were all children then that might be a decent simplification; if my 
sample were adults then that's lousy. 
 
The usual justification for a linear regression is that, for any differentiable function, the Taylor 
Theorem delivers a linear function as being a close approximation – but this is only within a 
neighborhood.  We need to work to get a good approximation. 
 
Nonlinear terms 
We can return to our regression using CPS data.  First, we might want to ask why our 
regression is linear.  This is mostly convenience, and we can easily add non-linear terms such as 
Age2, if we think that the typical age/wage profile looks like this: 

 

Age 

Wage 

 
So the regression would be: 

 iiii AgeAgeWage   2

210  



(where the term "..." indicates "other stuff" that should be in the regression). 

As we remember from calculus, 

 1 2 2
dWage

Age
dAge

      

so that the extra “boost” in wage from another birthday might fall as the person gets older, 

and even turn negative if the estimate of 2 0   (a bit of algebra can solve for the top of the hill 

by finding the Age that sets 0
dWage

dAge
 ). 

 
We can add higher-order effects as well.  Some labor econometricians argue for including Age3 
and Age4 terms, which can trace out some complicated wage/age profiles.  However we need 
to be careful of "overfitting" – adding more explanatory variables will never lower the R2. 
 
Logarithms 
Similarly can specify X or Y as ln(X) and/or ln(Y).  But we've got to be careful: remember from 
math (or theory of insurance from Intermediate Micro) that E[ln(Y)] IS NOT EQUAL TO 
ln(E[Y]) !  In cases where we're regressing on wages, this means that the log of the average 
wage is not equal to the average log wage.    
 
(Try it.  Go ahead, I'll wait.) 
 
When both X and Y are measured in logs then the coefficients have an easy economic 

interpretation.  Recall from calculus that with  lny x  and 
1dy

dx x
 , so %

dx
dy x

x
    -- our 

usual friend, the percent change.  So in a regression where both X and Y are in logarithms, then 
%

%
j

y y

x x


 
 
 

 is the elasticity of Y with respect to X.   

 
Also, if Y is in logs and D is a dummy variable, then the coefficient on the dummy variable is 
just the percent change when D switches from zero to one. 
 
So the choice of whether to specify Y as levels or logs is equivalent to asking whether dummy 
variables are better specified as having a constant level effect (i.e. women make $10,000 less 
than men) or having a percent change effect (women make 25% less than men).  As usual there 
is no general answer that one or the other is always right! 
 
Recall our discussion of dummy variables, that take values of just 0 or 1, which we’ll represent 
as Di.  Since, unlike the continuous variable Age, D takes just two values, it represents a shift of 
the constant term.  So the regression, 

 iiii uDAgeWage  310   

shows that people with D=0 have intercept of just 0, while those with D=1 have intercept 

equal to 0 + 3.  Graphically, this is: 



0+3

0

 
 

We need not assume that the 3 term is positive – if it were negative, it would just shift the line 
downward.  We do however assume that the rate at which age increases wages is the same for 
both genders – the lines are parallel. 
 
Dummy Variables Interacting with Other Explanatory Variables 
The assumption about parallel lines with the same slopes can be modified by adding 
interaction terms: define a variable as the product of the dummy times age, so the regression 
is  

 iiiiii uAgeDDAgeWage  4310   

so that, for those with D=0, as before 
Age

Wage




=1 but for those with D=1, 1 4

Wage

Age
 


 


.  

Graphically, 

0+3

0

 
so now the intercepts and slopes are different. 
 
So we might wonder if men and women have a similar wage-age profile.  We could fit a 
number of possible specifications that are variations of our basic model that wage depends on 
age and age-squared.  The first possible variation is simply that: 

2

0 1 2 3i i i i iWage Age Age D u        , 

which allows the wage profile lines to have different intercept-values but otherwise to be 
parallel (the same hump point where wages have their maximum value), as shown by this 
graph: 



 

w 

Age 
 

 
The next variation would be to allow the lines to have different slopes as well as different 
intercepts: 

2
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which allows the two groups to have different-shaped wage-age profiles, as in this graph: 
 

w 

Age 
 

(The wage-age profiles might intersect or they might not – it depends on the sample data.) 
 
This specification, with a dummy variable multiplying each term: the constant and all the 
explanatory variables, is equivalent to running two separate regressions: one for men and one 
for women: 

1 2

1 2
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D

Wage Age Age u

D
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Where the new coefficients are related to the old by the identities: 
0 0 3

female    , 

1 1 4

female    , and 2 2 5

female    . Sometimes breaking up the regressions is easier, if 

there are large datasets and many interactions. 
 



Multiple Dummy Variables 
Multiple dummy variables, D1,i , D2,i , …,DJ,i, operate on the same basic principle.  Of course we 
can then have many further interactions!  Suppose we have dummies for education and 
immigrant status.  The coefficient on education would tell us how the typical person (whether 
immigrant or native) fares, while the coefficient on immigrant would tell us how the typical 
immigrant (whatever her education) fares.  An interaction of “more than Bachelor’s degree” 
with “Immigrant” would tell how the typical highly-educated immigrant would do beyond how 
the “typical immigrant” and “typical highly-educated” person would do (which might be 
different, for both ends of the education scale).   
 
Many, Many Dummy Variables 
Don't let the name fool you – you'd have to be a dummy not to use lots of dummy variables.  
For example regressions to explain people's wages might use dummy variables for the industry 
in which a person works.  Regressions about financial data such as stock prices might include 
dummies for the days of the week and months of the year. 
 
Dummies for industries are often denoted with labels like "two-digit" or "three-digit" or similar 
jargon.  To understand this, you need to understand how the government classifies industries.  
A specific industry might get a 4-digit code where each digit makes a further more detailed 
classification.  The first digit refers to the broad section of the economy, as goods pass from 
the first producers (farmers and miners, first digit zero) to manufacturers (1 in the first digit for 
non-durable manufacturers such as meat processing, 2 for durable manufacturing, 3 for higher-
tech goods) to transportation, communications and utilities (4), to wholesale trade (5) then 
retail (6).  The 7's begin with FIRE (Finance, Insurance, and Real Estate) then services in the 
later 7 and early 8 digits while the 9 is for governments.  The second and third digits give more 
detail: e.g. 377 is for sawmills, 378 for plywood and engineered wood, 379 for prefabricated 
wood homes.  Some data sets might give you 5-digit or even 6-digit information.  These 
classifications date back to the 1930s and 1940s so some parts show their age: the ever-
increasing number of computer parts go where plain "office supplies" used to be.   
 
The CPS data distinguishes between "major industries" with 16 categories and "detailed 
industry" with about 50.  Creating 50 dummy variables could be tiresome so I recommend that 
you use SPSS's syntax editor that makes cut-and-paste work easier.  For example use the 
buttons to "compute" the first dummy variable then "Paste Syntax" to see the general form.  
Then copy-and-paste and change the number for the 51 variables: 
 
COMPUTE d_ind1 = (a_dtind EQ 1). 
COMPUTE d_ind2 = (a_dtind EQ 2). 
COMPUTE d_ind3 = (a_dtind EQ 3). 
COMPUTE d_ind4 = (a_dtind EQ 4). 
COMPUTE d_ind5 = (a_dtind EQ 5). 
COMPUTE d_ind6 = (a_dtind EQ 6). 
COMPUTE d_ind7 = (a_dtind EQ 7). 

 
You get the idea – take this up to 51.  Then add them to your regression!  



 
In other models such as predictions of sales, the specification might include a time trend (as 
discussed earlier) plus dummy variables for days of the week or months of the year, to 
represent the typical sales for, say, "a Monday in June".  
 
If you're lazy like me, you might not want to do all of this mousework.  (And if you really have a 
lot of variables, then you don't even have to be lazy.)  There must be an easier way! 
 
There is. 
 
SPSS is a graphical interface that basically writes SPSS code, which is then submitted to the 
program.  Clicking the buttons is writing computer code.  Look again at this screen, where I've 
started coding the next dummy variable, ed_hs (from Transform\Compute 

Variables…) 

 
 
That little button, "Paste," can be a lot of help.  It pastes the SPSS code that you just created 

with buttons into the SPSS Syntax Editor. 



 
 
Why is this helpful?  Because you can copy and paste these lines of code, if you are only going 
to make small changes to create a bunch of new variables.  So, for example, the education 
dummies could be created with this code: 
 
COMPUTE ed_hs = (A_HGA = 39) . 

VARIABLE LABELS ed_hs 'High School Diploma' . 

COMPUTE ed_smc = (A_HGA > 39) & (A_HGA < 43) . 

VARIABLE LABELS ed_smc 'Some College' . 

COMPUTE ed_coll = (A_HGA = 43) . 

VARIABLE LABELS ed_coll 'College 4 Year Degree' . 

COMPUTE ed_adv = (A_HGA > 43) . 

VARIABLE LABELS ed_adv 'Advanced Degree' . 

EXECUTE . 

 
Then choose "Run\All" from the drop-down menus to have SPSS execute the code. 

 
You can really see the time-saving element if, for example, you want to create dummies for 
geographical area.  There is a code, GEDIV, that tells what section of the country the 
respondent lives in.  Again these numbers have absolutely no inherent value, they're just codes 
from 1, New England, to 9, Pacific region.  We can't put GEDIV into a regression but we can put 
geographic dummies.  So we use the same procedure to create these: 



 
COMPUTE geo_1 = (GEDIV = 1) . 

COMPUTE geo_2 = (GEDIV = 2) . 

COMPUTE geo_3 = (GEDIV = 3) . 

COMPUTE geo_4 = (GEDIV = 4) . 

COMPUTE geo_5 = (GEDIV = 5) . 

COMPUTE geo_6 = (GEDIV = 6) . 

COMPUTE geo_7 = (GEDIV = 7) . 

COMPUTE geo_8 = (GEDIV = 8) . 

COMPUTE geo_9 = (GEDIV = 9) . 

EXECUTE. 

 
You can begin to realize the time-saving capability here.  Later we might create 50 detailed 
industry and 25 detailed occupation dummies. 
 
If at some point you get stuck (maybe the "Run" returns errors) or if you don't know the syntax 
to create a variable, you can go back to the button-pushing dialogue box. 
 
The final advantage is that, if you want to do the same commands on a different dataset (say, 
the March 2009) then as long as you have saved the syntax you can easily submit it again. 
 
With enough dummy variables we can start to create some respectable regressions! 
 
Use "Data\Select Cases…" to use only those with a non-zero wage.  Then do a regression 

of wage on Age, race & ethnicity (create some dummy variables for these), educational 
attainment, and geographic region. 
 
Why am I making you do all of this?  Because I want you to realize all of the choices that go into 
creating a regression or doing just about anything with data.  There are a host of choices 
available to you.  Some choices are rather conventional (for example, the education 
breakdown I used above) but you need to know the field in order to know what assumptions 
are common.  Sometimes these commonplace assumptions conceal important information.  
You want to do enough experimentation to understand which of your choices are crucial to 
your results.  Then you can begin to understand how people might analyze the exact same 
data but come to varying conclusions.  If your results contradict someone else's, then you have 
to figure out what are the important assumptions that create the difference. 
 
 
 


