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Learning Outcomes (from CFA exam Study Session 3, Quantitative Methods) 
Students will be able to: 

 construct and interpret a confidence interval for a normally distributed random variable, and determine the 
probability that a normally distributed random variable lies inside a given confidence interval; 

 define the standard normal distribution, explain how to standardize a random variable, and calculate and interpret 
probabilities using the standard normal distribution; 

 explain the construction of confidence intervals; 
 define a hypothesis, describe the steps of hypothesis testing, interpret and discuss the choice of the null hypothesis 

and alternative hypothesis, and distinguish between one-tailed and two-tailed tests of hypotheses; 
 define and interpret a test statistic, a Type I and a Type II error, and a significance level, and explain how significance 

levels are used in hypothesis testing; 

 
Hypothesis Testing 
One of the principal tasks facing the statistician is to perform hypothesis tests.  These are a 
formalization of the most basic questions that people ask and analyze every day – just 
contorted into odd shapes.  But as long as you remember the basic common sense underneath 
them, you can look up the precise details of the formalization that lays on top. 
 
The basic question is "How likely is it, that I'm being fooled?"  Once we accept that the world is 
random (rather than a manifestation of some god's will), we must decide how to make our 
decisions, knowing that we cannot guarantee that we will always be right.  There is some risk 
that the world will seem to be one way, when actually it is not.  The stars are strewn randomly 
across the sky but some bright ones seem to line up into patterns.  So too any data might 
sometimes line up into patterns. 
 
A formal hypothesis sets a mathematical condition that I want to test.  Often this condition 
takes the form of some parameter being zero for no relationship or no difference. 
 
Statisticians tend to stand on their heads and ask: What if there were actually no relationship?  
(Usually they ask questions of the form, "suppose the conventional wisdom were true?")  This 
statement, about "no relationship," is called the Null Hypothesis, sometimes abbreviated as 
H0.   The Null Hypothesis is tested against an Alternative Hypothesis, HA. 
 
Before we even begin looking at the data we can set down some rules for this test.  We know 
that there is some probability that nature will fool me, that it will seem as though there is a 



relationship when actually there is none.  The statistical test will create a model of a world 
where there is actually no relationship and then ask how likely it is that we could see what we 
actually see, "How likely is it, that I'm being fooled?" 
 
The "likelihood that I'm being fooled" is the p-value. 
 
For a scientific experiment we typically first choose the level of certainty that we desire.  This is 
called the significance level.  This answers, "How low does the p-value have to be, for me to 
accept the formal hypothesis?"  To be fair, it is important that we set this value first because 
otherwise we might be biased in favor of an outcome that we want to see.  By convention, 
economists typically use 10%, 5%, and 1%; 5% is the most common. 
 
A five percent level of a test is conservative, it means that we want to see so much evidence 
that there is only a 5% chance that we could be fooled into thinking that there's something 
there, when nothing is actually there.  Five percent is not perfect, though – it still means that of 
every 20 tests where I decide that there is a relationship there, it is likely that I'm being fooled 
in one of those – I'm seeing a relationship where there's nothing there. 
 
To help ourselves to remember that we can never be truly certain of our judgment of a test, we 
have a peculiar language that we use for hypothesis testing.  If the "likelihood that I'm being 
fooled" is less than 5% then we say that the data allow us to reject the null hypothesis.  If the 
"likelihood that I'm being fooled" is more than 5% then the data do not reject the null 
hypothesis. 
 
Note the formalism: we never "accept" the null hypothesis.  Why not?  Suppose I were doing 
something like measuring a piece of machinery, which is supposed to be a centimeter long.  
The null hypothesis is that it is not defective and so is one centimeter in length.  If I measure 
with a ruler I might not find any difference to the eye.  So I cannot reject the hypothesis that it 
is one centimeter.  But if I looked with a microscope I might find that it is not quite one 
centimeter!  The fact that, with my eye, I don't see any difference, does not imply that a better 
measurement could not find any difference.  So I cannot say that it is truly exactly one 
centimeter; only that I can't tell that it isn't. 
 
So too with statistics.  If I'm looking to see if some portfolio strategy produces higher returns, 
then with one month of data I might not see any difference.  So I would not reject the null 
hypothesis (that the new strategy is no improvement).  But it is possible that the new strategy, 
if carried out for 100 months or 1000 months or more might show some tiny difference. 
 
Not rejecting the null is saying that I'm not sure that I'm not being fooled.  (Read that sentence 
again; it's not immediately clear but it's trying to make a subtle and important point.) 
 
If you watched the NY Giants beat the 49ers in January, you saw the logic of hypothesis testing 
explained by the referee, Ed Hochuli, "To reverse on replay, there must me uncontroverted 
evidence that the ruling on the field is wrong. In other words, you have to be certain. Here, the 



ruling on the field stands."  (When the 49ers player ran along the sideline to make a touchdown 
– the replay looked whether his feet went out of bounds.)  Note that Hochuli does not say that 
the original referee call was right – only that they cannot say for sure that it was wrong.  
 
To summarize, Hypothesis Testing asks, "What is the chance that I would see the value that 
I've actually got, if there truly were no relationship?"  If this p-value is lower than 5% then I 
reject the null hypothesis of "no relationship."  If the p-value is greater than 5% then I do not 
reject the null hypothesis of "no relationship." 
 
The rest is mechanics. 
 

The null hypothesis would tell that a parameter has some particular value, say  zero: 0 : 0H   ; 

the alternative hypothesis is : 0AH   .  Under the null hypothesis the parameter has some 

distribution (often normal), so  0 : ~ 0, std errH N  .  Generally we have an estimate for std err

, which is se  (for small samples this inserts additional uncertainty).  So I know that, under the 

null hypothesis, 
se


 has a standard normal distribution (mean of zero and standard deviation of 

one).  I know exactly what this distribution looks like, it's the usual bell-shaped curve: 

 
So from this I can calculate, "What is the chance that I would see the value that I've actually 
got, if there truly were no relationship?," by asking what is the area under the curve that is 
farther away from zero than the value that the data give.  (I still don't know what value the data 
will give!  I can do all of this calculation beforehand.) 
 

Any particular estimate of   is generally going to be X .  So the test statistic is formed with 

X

se
. 

 



Looking at the standard normal pdf, a value of the test statistic of 1.5 would not meet the 5% 
criterion (go back and calculate areas under the curve).  A value of 2 would meet the 5% 
criterion, allowing us to reject the null hypothesis.  For a 5% significance level, the standard 
normal critical value is 1.96: if the test statistic is larger than 1.96 (in absolute value) then its p-
value is less than 5%, and vice versa.  (You can find critical values by looking them up in a table 
or using the computer.) 
 

Sidebar: Sometimes you see people do a one-sided test, which is within the 
letter of the law but not necessarily the spirit of the law (particularly in 
regression formats).  It allows for less restrictive testing, as long as we believe 
that we know that there is only one possible direction of deviation (so, for 
example, if the sample could be larger than zero but never smaller).  But in this 
case maybe the normal distribution is inapplicable. 

 
The test statistic can be transformed into measurements of   or into a confidence interval. 

 

If I know that I will reject the null hypothesis of 0   at a 5% level if the test statistic, 
X

se
, is 

greater than 1.96 (in absolute value), then I can change around this statement to be about X .  

This says that if the estimated value of X  is less than 1.96 standard errors from zero, we 
cannot reject the null hypothesis.  So cannot reject if: 

 1.96
X

se
  

1.96X se  

1.96 1.96se X se   . 

This range,  1.96 ,1.96se se , is directly comparable to X .  If I divide X  by its standard error 

then this ratio has a normal distribution with mean zero and standard deviation of one.  If I 

don't divide then X  has a normal distribution with mean zero and standard deviation, se . 
 

If the null hypothesis is not zero but some other number, null , then under the null hypothesis 

the estimator would have a normal distribution with mean of null  and standard error, se .  To 

transform this to a standard normal would mean subtracting the mean and dividing by se , so 

cannot reject if 1.96
nullX

se


 , i.e. cannot reject if X  is within the range, 

 1.96 , 1.96null nullse se   . 

 
Confidence Intervals 
We can use the same critical values to construct a confidence interval for the estimator, usually 

expressed in the form 1.96X se .  This shows that, for a given sample size (therefore se , 
which depends on the sample size) that there is a 95% likelihood that the interval formed 
around a given estimator contains the true value. 



 
This relates to hypothesis testing because if the confidence interval includes the null 
hypothesis then we cannot reject the null; if the null hypothesis value is outside of the 
confidence interval then we can reject the null. 
 
Find p-values 
We can also find p-values associated with a particular null hypothesis by turning around the 
process outlined above.  If the null hypothesis is zero, then with a 5% significance level we 

reject the null if 
X

se
 is greater than 1.96 in absolute value.  What if the ratio 

X

se
 were 2 – what is 

the smallest significance level that would still reject?  (Check your understanding: is it more or 
less than 5%?) 
 

We can compute the ratio 
X

se
 and then convert this number to a p-value, which is the smallest 

significance level that would still reject the null hypothesis (and if the null is rejected at a low 
level then it would automatically be rejected at any higher levels). 
 
Type I and Type II Errors 
Whenever we use statistics we must accept that there is a likelihood of errors.  In fact we 
distinguish between two types of errors, called (unimaginatively) Type I and Type II.  These 
errors arise because a null hypothesis could be either true or false and a particular value of a 
statistic could lead me to reject or not reject the null hypothesis, H0.  A table of the four 
outcomes is: 

 H0 is true H0 is false 

Do not reject H0 good! oops – Type II 
Reject H0 oops – Type I good! 

Our chosen significance level (usually 5%) gives the probability of making an error of Type I.  
We cannot control the level of Type II error because we do not know just how far away H0 is 
from being true.  If our null hypothesis is that there is a zero relationship between two 
variables, when actually there is a tiny, weak relationship of 0.0001%, then we could be very 
likely to make a Type II error.  If there is a huge, strong relationship then we'd be much less 
likely to make a Type II error. 
 
There is a tradeoff (as with so much else in economics!).  If I push down the likelihood of 
making a Type I error (using 1% significance not 5%) then I must be increasing the likelihood of 
making a Type II error.   
 
Edward Gibbon notes that the emperor Valens would "satisfy his anxious suspicions by the 
promiscuous execution of the innocent and the guilty" (chapter 26).  This rejects the null 
hypothesis of "innocence"; so a great deal of Type I error was acceptable to avoid Type II error. 
 



Every email system fights spam with some sort of test: what is the likelihood that a given 
message is spam?  If it's spam, put it in the "Junk" folder; else put it in the inbox.  A Type I error 
represents putting good mail into the "Junk" folder; Type II puts junk into your inbox. 
 
Examples 
Let's do some examples.   
Assume that the calculated average is 3, the sample standard deviation is 15, and there are 100 
observations.  The null hypothesis is that the average is zero.  The standard error of the 

average is 
15

1.5
100

se   .  We can immediately see that the sample average is more than two 

standard errors away from zero so we can reject at a 95% confidence level. 
 

Doing this step-by-step, the average over its standard error is 
3

2
1.5

X

se
  .  Compare this to 

1.96 and see that 2 > 1.96 so we can reject.  Alternately we could calculate the interval, 

 1.96 ,1.96s s , which is     1.96 1.5 , 1.96 1.5   = (-2.94, 2.94), outside of which we reject the 

null.  And 3 is outside that interval.  Or calculate a 95% confidence interval of 

 3 2.94 0.06,5.94  , which does not contain zero so we can reject the null.  The critical value 

for the estimate of 3 is 4.55% (found from Excel either 2*(1-NORMSDIST(2)) if using the 
standard normal distribution or 2*(1-NORMDIST(3,0,1.5,TRUE)) if using the general normal 
distribution with a mean of zero and standard error of 1.5). 
 
If the sample average were -3, with the same sample standard deviation and same 100 
observations, then the conclusions would be exactly the same. 
 
Or suppose you find that the average difference between two samples, X and Y, (i.e. 

 
1

1 n

i i

i

X Y X Y
n 

   ) is -0.0378.  The sample standard deviation is 0.357.  The number of 

observations is 652.  These three pieces of information are enough to find confidence intervals, 
do t-tests, and find p-values. 
 
How? 
 
First find the standard error of the average difference.  This standard error is 0.357 divided by 

the square root of the number of observations, so 
.357

0.01398
652

 . 

 
So we know (from the Central Limit Theorem) that the average has a normal distribution.  Our 
best estimate of its true mean is the sample average, -0.0378.  Our best estimate of its true 
standard error is the sample standard error, 0.01398.  So we have a normal distribution with 
mean -0.0378 and standard error 0.01398. 
 



We can make this into a standard normal distribution by adding 0.0378 and dividing by the 
sample standard error, so now the mean is zero and the standard error is one. 
 
We want to see how likely it would be, if the true mean were actually zero, that we would see a 
value as extreme as -0.0378.  (Remember: we're thinking like statisticians!) 
 

The value of -0.0378 is 
0.0378

0.01398


 = -2.70 standard deviations from zero.    

 
From this we can either compare this against critical t-values or use it to get a p-value. 
 
To find the p-value, we can use Excel just like in the homework assignment.  If we have a 
standard normal distribution, what is the probability of finding a value as far from zero as -2.27, 
if the true mean were zero?  This is 2*(1-NORMSDIST(-2.27)) = 0.6%.  The p-value is 0.006 or 
0.6%.  If we are using a 5% level of significance then since 0.6% is less than 5%, we reject the 
null hypothesis of a zero mean.  If we are using a 1% level of significance then we can reject the 
null hypothesis of a zero mean since 0.6% is less than 1%. 
 
Or instead of standardizing we could have used Excel's other function to find the probability in 
the left tail, the area less than -0.0378, for a distribution with mean zero and standard error 
0.01398, so 2*NORMDIST(-0.0378,0,0.01398,TRUE) = 0.6%. 
 
Standardizing means (in this case) zooming in, moving from finding the area in the tail of a 
very small pdf, like this: 

 
to moving to a standard normal, like this: 



 
 
But since we're only changing the units on the x-axis, the two areas of probability are the same. 
 
We could also work backwards.  We know that if we find a standardized value greater (in 
absolute value) than 1.96, we would reject the null hypothesis of zero at the 5% level.  (You can 
go back to your notes and/or HW1 to remind yourself of why 1.96 is so special.) 
 

We found that for this particular case, each standard deviation is of size 
.357

0.01398
652

 .  So 

we can multiply 1.96 times this value to see that if we get a value for the mean, which is farther 
from zero than 0.01398*1.96 = 0.0274, then we would reject the null.  Sure enough, our value 
of -0.0378 is farther from zero, so we reject. 
 
Alternately, use this 1.96 times the standard error to find a confidence interval.  Choose 1.96 
for a 95% confidence interval, so the confidence interval around -0.0378 is plus or minus 
0.0274, 0.0378 0.0274  , which is the interval (-0.0652, -0.0104).  Since this interval does not 
include zero we can be 95% confident that we can reject the null hypothesis of zero. 
 
Hypothesis Testing with two samples 
In our examples we have often come up with a question where we want to know if there is a 
difference in mean between two groups.  From the PUMS data, we could ask if, say, people in 



NYC are paying too much of their income to rent (where "too much" is generally defined as 
one-third). 
 
For the PUMS data, SPSS tells us (using "Analyze \ Descriptive Statistics \ Descriptives") that, 
of 74,793 households, the average "Gross Rent as percent of income" in the sample is 40, with a 

standard deviation of 28.89.  So the standard error of the average is 

28.89

74793

s

n


= 0.1056; so 
two standard errors from 40 is still only 39.7887 and 40.2113; the ideal amount of 33% of 
income is over 66 standard errors away!  We don't need to look up NORMSDIST(-66) to figure 
that this is highly improbable.  We might want to subdivide farther: to look if the burden of 
rent is worse in Manhattan, say, compared with the other boroughs.   
 
Now we find that in Manhattan the fraction of income going to rent is 37.79 with standard 
deviation of 27.608, against 41.62 (with standard error of 29.213) for the outer boroughs (SPSS 
output in appendix below).  Are these significantly different from each other?  Could we just be 
observing a difference that is within the range of variation that we'd expect, given such a 
diverse group of households?  Are they statistically significantly different from each other?  
Our formula that we learned last time has only one n – what do we do if we have two samples? 
 
Basically we want to figure out how to use the two separate standard errors to estimate the 
joint standard error; once we get that we'll use the same basic strategy to get our estimate, 
subtract off the null hypothesis (usually zero), and divide by its standard error.  We just need to 
know what is that new standard error. 
 
To do this we use the sum of the two sample variances: if we are testing group 1 vs group 2, 

then a test of just group 1 would estimate its variance as 
2

1

1

s

n
, a test of group 2 would use 

2

2

2

s

n
, 

and a test of the group would estimate the standard error as 
2 2

1 2

1 2

s s

n n
 . 

 
We can make either of two assumptions: either the standard deviations are the same (even 
though we don't know them) or they're different (even though we don't know how different).  
It is more conservative to assume that they're different (i.e. don't assume that they're the 
same) – this makes the test less likely to reject the null. 
 
More examples 
Look at the burden of rent by household type (single vs married) in the PUMS data.  (Either 
"Analyze \ Descriptive Statistics \ Explore" or "Analyze \ Reports \ Case Summaries" then un-
click "display cases," put in "Gross Rent as percent of income" as "Variable(s)" and "Household 
Type" into "Grouping Variable(s)" and choose from "Statistics" to get "Number of cases," 
"Mean," and "Standard Deviation" to get fewer extra stats.) 
 



Gross Rent as percent of income 

Household Type N Mean Std. Deviation 

married couple 20581 33.17 25.397 

male householder no wife 3834 35.42 26.344 

female householder no 

husband 

15654 45.05 31.213 

male householder living alone 11520 41.93 29.555 

not living alone 3255 30.92 23.826 

female householder living 

along 

16893 46.33 29.745 

other 3056 33.29 24.506 

Total 74793 40.00 28.893 

 

The first three categories are householders (usually with families) either married (20,581 
households), headed by a male (only 3834) or headed by a female (15,654 households).  The 
remainder are living alone or in other household structures so we will ignore them for now. 
 
Married couples have a mean rent as fraction of income as 33.17.  The standard error of this 
mean is 25.397/sqrt(20581) = 0.178.  So what is the likelihood that married couples have a mean 
of 33 percent of income devoted to rent, but we could observe a number as high or higher as 
33.17?  This is just under one standard error away.  Graph this normal distribution as either: 

 
or, standardized,  

32.4 32.6 32.8 33 33.2 33.4 33.6 



 
So the area in the right tail is 16.98%; the probability of seeing a difference as far away as 33.17 
or farther (in either direction) is 33.96%.  So we cannot reject the null hypothesis that the true 
value is 33% but we could observe this difference. 
 
By contrast, the average burden of rent for female-headed households is 45.05%; this average 
has a standard error of 31.213/sqrt(15654) = .249.  So 45.05 is 12.05 away from 33, which is 
(45.05 – 33)/.249 = 48.3 standard errors away from the mean!   
 
It is almost silly to graph this: 

 
since we note that the right tail goes only as high as 34 so 45 would be far off the edge of the 
page, with about a zero probability. 
 

-4 -3 -2 -1 0 1 2 3 4 

32 32.5 33 33.5 34 



So we can reject the null hypothesis that female-headed households devote 33% of their 
income to rent since there is almost no chance that, if the true value were 33%, we could 
observe a value as far away as 45%. 
 
Alternately we could construct confidence intervals for these two averages: married couples 
pay 33.17 ± 1.96*0.178 fraction of income to rent; this is 33.17 ± .349, the interval (32.821, 
33.519) which includes 33%.  Female-headed households pay 45.05 ± 1.96*.245 = 45.05 ± .489, 
the interval (44.561, 45.539), which is far away from 33%. 
 
Recall: why 1.96?  Because the area under the normal distribution, within ±1.96 of the mean (of 
zero) has area of 0.95; alternately the area in the tails to the left of -1.96 and to the right of 1.96 is 
0.05. 

 
The area in blue is 5%; the area in the middle is 95%. 
 
Alternately we could form a statistic of the difference in averages.  This difference is 45.05 – 

33.17 = 11.88.  What is the standard error of this difference?  Use the formula 

2 2

1 2

1 2

s s

n n


 so it is 
sqrt[ (31.213)2/15654 + (25.397)2/20581 ]  = sqrt( .062 + .031 ) = .306.  So the difference of 11.88 is 
11.88/.306 = 38.8 so nearly 39 standard errors away from zero.  Again, this means that there is 
almost zero probability that the difference could actually be zero and yet we'd observe such a 
big difference. 
 
 
To review, we can reject, with 95% confidence, the null hypothesis of zero if the absolute value 

of the z-statistic is greater than 1.96, 1.96Z   where 
0

X

X
Z




 .  Re-arrange this to state that 



we reject if 1.96 1.96 1.96
X

X
Z Z


       , which is equivalent to the statement that 

we can reject if 1.96
X

X   . 

 
To construct a 99% confidence interval, we'd have to find the Z that brackets 99% of the area 
under the standard normal – you should be able to do this.  Then use that number instead of 
1.96.  For a 90% confidence interval, use a number that brackets 90% of the area and use that 
number instead of 1.96. 
 
 
P-values 
If confidence intervals weren't confusing enough, we can also construct equivalent hypothesis 
tests with p-values.  Where the Z-statistic tells how many standard errors away from zero is the 
observed difference (leaving it for us to know that more than 1.96 implies less than 5%), the p-
value calculates this directly.   
 
So to find p-values for the averages above, for fraction of income going to rent for married or 
female-headed households, find the probabilities under the normal for the standardized value 
(for married couples) of (33.17 – 33)/.178 = .955; this two-tailed probability is 33.96% (as shown 
above). 
 
Confidence Intervals for Polls 
I promised that I would explain to you how pollsters figure out the "±2 percentage points" 
margin of error for a political poll.  Now that you know about Confidence Intervals you should 
be able to figure these out.  Remember (or go back and look up) that for a binomial distribution 

the standard error is 
 1p p

N


, where p is the proportion of "one" values and N is the number 

of respondents to the poll.  We can use our estimate of the proportion for p or, to be more 
conservative, use the maximum value of p(1 – p) where is p= ½.  A bit of quick math shows that 

with  
1 1 1 1

, 1 0.5
2 2 2 2

p p p      .  So a poll of 100 people has a maximum standard 

error of 
.5 .5

.05
10100

  ; a poll of 400 people has maximum standard error half that size, of 

.025; 900 people give a maximum standard error 0.0167, etc.   
 
A 95% Confidence Interval is 1.96 (from the Standard Normal distribution) times the standard 
error; how many people do we need to poll, to get a margin of error of ±2 percentage points?  

We want 
 1

1.96 .02
p p

N


  so this is, at maximum where p= ½, 2401. 

 



A polling organization therefore prices its polls depending on the client's desired accuracy: to 
get ±2 percentage points requires between 2000 and 2500 respondents; if the client is satisfied 
with just ±5 percentage points then the poll is cheaper.  (You can, and for practice should, 
calculate how many respondents are needed in order to get a margin of error of 2, 3, 4, and 5 
percentage points.  For extra, figure that a pollster needs to only get the margin to ±2.49 
percentage points in order to round to ±2, so they can get away with slightly fewer.) 
 
Here's a devious problem: 

You are in charge of polling for a political campaign.  You have commissioned a poll of 300 likely voters.  
Since voters are divided into three distinct geographical groups (A, B and C), the poll is subdivided into 
three groups with 100 people each.  The poll results are as follows: 

  total  A B C 

 number in favor of candidate 170  58 57 55 

 number total 300  100 100 100 
a. Calculate a t-statistic, p-value, and a confidence interval for the main poll (with all of the people) 

and for each of the sub-groups. 
b. In simple language (less than 150 words), explain what the poll means and how much confidence 

the campaign can put in the numbers. 
c. Again in simple language (less than 150 words), answer the opposing candidate's complaint, 

"The biased media confidently says that I'll lose even though they admit that they can't be sure 
about any of the subgroups!  That's neither fair nor accurate!" 
 

 
 


