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Simple Machine Learning 
From basic notions of mean and standard deviation, we can quickly move to some simple types of machine 
learning. This is a great example of a very simple idea that has some fancy-sounding terminology. The idea is 
that if you want to classify a new observation then the easiest guess is to ask how old observations that were 
very near were classified. "Birds of a feather flock together," or "You're judged by the company you keep." 
 
There are many possibilities, where we gather data on some preliminary values and try to predict something 
else. If we have a big dataset on past students who were admitted or not to a certain program, we could use 
this data to predict future admits. Lots of marketing might use this sort of algorithm: if consumers are similar 
by some characteristics then they might be similarly receptive to a certain ad. 
 
The machine learning technique called "K Nearest Neighbors" or "k-nn" uses other observations that are 
"nearby" to try to classify new observations. 
 
What does "near" mean?  If we have a list of numeric data then the temptation is to just use simple distance 
(typically Euclidean). There are two aspects to this choice: first, what variables are helpful in classification; 
second, how are these variables scaled?  The choice of what variables is a bit tricky since we want to find 
some good ones but not too many (too many, relative to the size of the data, gets into the "curse of 
dimensionality" and there are usually few neighbors). That usually requires a bit of background knowledge – 
this is called "machine learning" but it's actually strongly human-controlled machine learning (so cyborg 
learning?). 
 
The second part of "near" is a bit more subtle: the scaling of each variable is important. If a college is 
classifying high school students as either admit or not, they might use GPA and SAT. If HS GPA is on a scale 
of 0-4 then for selective colleges most of the relevant admissions will have GPA from 3.5-4. SAT scores on the 
other hand (for now assume they're math plus verbal) could have differences of hundreds of points. So the 
SAT score variation will swamp the GPA variation. (This is why some people think of scores on standardized 
tests as their percentile.) 
 

Detour on Ranking 
We often see statistics reported that rank a number of different units based on a number of different 
measures. For instance, these could be the US News ranking of colleges, or magazine rankings of city 
livability, or sports rankings of college teams, or any of a multitude of different things. We would hope that 
statistics could provide some simple formulas; we would hope in vain. 
 
Education: College rankings try to combine student/faculty ratios, measures of selectivity, SAT scores, GPA; 
some add in numbers of bars near campus or the prestige of journals in which faculty publish. What is best?  
School teachers face efforts to rank them, by student test score improvements as well as other factors; 
schools and districts are ranked by a variety of measures.  
Sports might seem to have it relatively easy since there is a single ranking given by pre-arranged rules, but 
still fans can argue: a team has a good offense because they scored a lot (even though some other team won 
more games); some players are better on defense but worse on offense. Sports Illustrated tried to rank the 
100 all-time best sports stars, somehow comparing baseball player Babe Ruth with the race horse Secretariat!  
Most magazines know that rankings drive sales and give buzz. 
Food nutrition trades off calories, fat content, fiber, vitamin and mineral content; who is to say whether kale 
or blueberries are healthier?  Aren't interaction effects important?  Someone trying to lose weight would 
make a very different ranking than someone training for a marathon. 



Sustainability or "green" rankings are difficult: there are so many trade-offs!  If we care about global warming 
then we look at CO2 emissions, but what about other pollutants?  Is nuclear power better than natural gas?  
Ethical consumption might also consider the material conditions of workers (fair-trade coffee or no-
sweatshop clothing) or other considerations. 
Politics: which political party is better for the economy?  Could measure stock returns or unemployment rate 
or GDP growth or hundreds of others. Average wage or median earnings (household or individual)?  Each set 
of measures could give different results. You can try this yourself, get some data from FRED 
(http://research.stlouisfed.org/fred2/) and go wild. 
 
In the simplest case, if there is just a single measured variable, we can rank units based on this single 
measure, however even in this case there is rarely a clear way of specifying which rankings are based on 
differences that are large and which are small. (The statistical theory is based on "order statistics.")  If the 
outcome measure has, for example, a normal distribution, then there will be a large number of units with 
outcomes right around the middle, so even small measurement errors can make a big difference to ranking. 
 
In the more complicated (and more common) case, we have a variety of measures of outcomes and want to 
rank units based on some amalgamation of these outcomes. Economic theory has a very strong result here: a 
bit of math can prove that there is no way to generate a function for a group of people that completely and 
successfully takes account of the information of individual choices.  (This result is due to CCNY alumnus and 
Nobel Laureate Ken Arrow.) It can’t be done. In general many rankings can be substantially changed by 
adding factors or even changing the units of certain of the factors (changing the measure of "near" as 
discussed before). 
 
Many rankings take an equal weighting of each item, but there is absolutely no good reason to do this 
generally: why would we believe that each measure is equally valid?  Some rankings might arbitrarily choose 
weights or take a separate survey to find weights (equally problematic!). You could average what fraction of 
measures achieve some hurdle. But there’s no reason to think that’s better. 
 
One possible way around this problem might seem to be: just ask for people's rankings (let them figure out 
what weights to use in their own utility functions) and report some aggregation. However here again there is 
no single method that is guaranteed to give correct aggregations (this is the Ken Arrow result again). Some 
surveys ask people to rank units from 1-20, then add the rankings and the unit with the lowest number wins. 
But what if some people rank number 1 as far ahead of all of their competitors, while others see the top 3 as 
tight together?  This distance information is omitted from the rankings. Some surveys might, instead, give 10 
points for a #1 ranking, 8 points for #2, and so on – but again this presupposes some distance between the 
ranks. 
 
This is not to say that ranking is hopeless or never informative, just that there is no single path that will 
inerrantly give the correct result. Working through various rankings, an analyst might determine that a broad 
swathe of weights upon the various measures would all give similar rankings to certain outliers. It would be 
useful to know that a particular unit is almost always ranked near the top while some other one is nearly 
always at the bottom. 
 
Cathy O'Neil's book, Weapons of Math Destruction, gives many more examples of problems that arise. 

Other Ignorant Beliefs  
While I'm working to extirpate popular heresies, let me address another one, which is particularly common when the 
Olympics roll around: the extraordinary belief that outliers can give useful information about the average value. We hear 
these judgments all of the time: some country wins an unusual number of Olympic medals, thus the entire population of 
the country must be unusually skilled at this task. Or some gender/race/ethnicity is overrepresented in a certain profession 

http://research.stlouisfed.org/fred2/


thus that gender/race/ethnicity is more skilled on average. Or a school has a large number of winners of national 
competitions, thus the average is higher. Really? 
 
Statistically speaking, the extreme values of a distribution depend on many parameters such as the higher moments. If I 
have two distributions with the exact same mean, standard deviation, and skewness, but different values of kurtosis, then 
one distribution will systematically have higher extremes (by definition of kurtosis). So in general it is not true to infer that 
a higher number of extreme values implies a higher mean. But people do. 

 
Rankings can be shifted by different values of "near" as can machine learning algorithms. It is up to you to 
learn about how to use these most adroitly. 
 
The variation in a measure is sometimes called its "information". Consider even a simple case where students' 
grades in a class are determined by even weighting of 2 exams. If scores on one exam are much more variable 
than scores on the other exam then they don't actually end up contributing equal weight to student ranking. 
(Think of the limiting case where everyone gets the same score on one exam, therefore it has no contribution 
to ranking even if it is given 50% weight.) 
 
A common way to manage this is to standardize the predictors (subtract mean and divide by standard 
deviation) or scale them to be all in the [0,1] interval, although this is far from perfect. There is an art to 
choosing predictors. Although it might not seem obvious, this is essentially the same problem as with 
rankings. 
 
I provided a Lab with some detail of code for k-nn. 
 
It uses a technique that we'll often return to: splitting the data into a training set and a test set. If the point of 
a model is to predict some data, then I want to test it out on some data that was not used for training. For 
example you've doubtless taken classes with various types of exams. Sometimes the instructor will give 
students a number of practice problems then the exam would consist of some of those problems. Other times 
the instructor will give practice problems but then the exam is new problems that are related to the practice 
but not identical. I think you'd agree that the second type is more difficult! 
 
We want to test our models similarly and don't just reuse data to give an easy test. We take out some of the 
data and don't use that in the estimation. The data used for estimation is the "training" data, that we use to 
train the model. The test data is separate, used to test how well that model performs on data that it hasn't 
seen before. Here we use 80% of the data as the training set and the remaining 20% as the test set. 
 
The "set seed" command is a bit of magic that lets us take a random sample but if you do it again the 
computer would take the same "random" sample. The computer doesn't actually take a random sample but it 
is actually pseudo-random where complicated algorithms create numbers that look random in many ways but 
are actually deterministic so if we start from the same value then we get the same list of random numbers. 
The "seed" sets that starting point. You might think, why not just take the first 80% of the sample, but that 
would depend on the assumption that the ordering of data is random. Many datasets have structure so the 
observations might be ordered in some way. 
 
The program finishes by using the knn routine. It can use different numbers of nearest neighbors so 
experiments with using 1, 3, 5, 7 or 9 nearest neighbors for the classification and reports how accurate each 
one is. 
 
(Let me crush a bit, I learned much of the k-nn stuff from the great book Doing Data Science by Cathy O'Neil & 
Rachel Schutt – get it, read it, love it!) 



Jumping into OLS 

OLS is Ordinary Least Squares, which as the name implies is ordinary, typical, common – something 
that is widely used in so much analysis. 

We are accustomed to looking at graphs that show values of two variables and trying to discern 
patterns. Consider again these two graphs of financial variables. 

This plots the returns of Hong Kong's Hang Seng index against the returns of Singapore's Straits 
Times index (over the period from Jan 2, 1991 to Jan 31, 2006) 

 

This next graph shows the S&P 500 returns and interest rates (1-month Eurodollar) during 1989-2004. 



 

You don't have to be a highly-skilled econometrician to see the difference in the relationships. It would 
seem reasonable that the Hong Kong and Singapore stock indexes are closely linked while the US stock index 
is not closely related to interest rates. 

So we want to ask, how could we measure these relationships?  Since these two graphs are rather 
extreme cases, how can we distinguish cases in the middle?  How can we try to guard against seeing 
relationships where, in fact, none actually exist?  We will consider each of these questions in turn. 

How can we measure the relationship? 

Facing a graph like the Hong Kong/Singapore stock indexes, we might represent the relationship by 
drawing a line, something like this: 



 

Now if this line-drawing were done just by hand, just sketching in a line, then different people would 
sketch different lines, which would be clearly unsatisfactory. What is the process by which we sketch the line?   

Typically we want to find a relationship because we want to predict something, to find out that, if I 
know one variable, then how does this knowledge affect my prediction of some other variable. We call the 
first variable, the one known at the beginning, X. The variable that we're trying to predict is called Y. So in the 
example above, the Singapore stock index is X and the Hong Kong index is Y. The line that we would draw in 
the picture would represent our best guess of what Y would be, given our knowledge about X. 

This line is drawn to get the best guess "close to" the actual Y values – where by "close to" we actually 
minimize the average squared distance. Why square the distance?  This is one question which we will return 
to, again and again; for now the reason is that a squared distance really penalizes the big misses. If I square a 
small number, I get a bigger number. If I square a big number, I get a HUGE number. (And if I square a number 
less than one, I get a smaller number.)  So minimizing the squared distance will mean that I am willing to 
make a bunch of small errors in order to reduce a really big error. This is why there is the "LS" in "OLS" -- 
"Ordinary Least Squares" finds the least squared difference. 

A computer can easily calculate a line that minimizes the squared distance between each Y value and 
the best prediction. There are also formulas for it. (We'll come back to the formulas; put a lightning bolt here 

to remind us: .) 



For a moment consider how powerful this procedure is. A line that represents a relationship between 
X and Y can be entirely produced by knowing just two numbers: the y-intercept and the slope of the line. In 
algebra class you probably learned the equation as: 

Y mX b= +  

where the slope is m  and the y-intercept is b . When 0X =  then Y b= , which is the value of the line 
when the line intersects the Y-axis (when X is zero). The y-intercept can be positive or negative or zero. The 

slope is the value of Y
X

∆
∆

, which tells how much Y changes when X changes by one unit. To find the predicted 

value of Y at any point we substitute the value of X into the equation. 

In econometrics we will typically use a different notation, 

 0 1Y Xβ β= +  

where now 0β  is the y-intercept and the slope is 1β . (Econometricians looooove Greek letters like 
beta, get used to it!) 

The relationship between X and Y can be positive or negative. Basic economic theory says that we 
expect that the amount demanded of some item will be a positive function of income and a negative function 

of price (for a normal good). We can easily have a case where 1 0β < . 

If X and Y had no systematic relation, then this would imply that 1 0β =  (in which case, 0β  is just the 

mean of Y). In the 1 0β =  case, Y takes on higher or lower values independently of what is the level of X. 

This is the case for the S&P 500 return and interest rates: 



 

So there does not appear to be any relationship. 

Let's fine up the notation from above a bit more: when we fit a line to the data, we do not always have 

Y exactly and precisely equal to 0 1Xβ β+ . Sometime Y is a bit bigger, sometimes a bit smaller. The 

difference is an error in the model. So we should actually write 0 1Y Xβ β ε= + +  where epsilon is the error 
between the model value of Y and the actual observed value. 

Computer programs will easily compute this OLS line; even Excel will do it. When you create an XY 
(Scatter) chart, then right-click on the data series, "Add Trendline" and choose "Linear" to get the OLS 
estimates.  

Angrist & Pischke distinguish the Conditional Expectation Function as the average value of Y given 
some X; and OLS is simply the best linear predictor. 

How can we distinguish cases in the middle? 

Hopefully you've followed along so far, but are currently wondering: How do I tell the difference 
between the Hong Kong/Singapore case and the S&P500/Interest Rate case?  Maybe art historians or literary 
theorists can put up with having "beauty" as a determinant of excellence, but what is a beautiful line to 
econometricians? 



 

There are two separate answers here, and it's important that we separate them. Many analyses 
muddle them up. One answer is simply whether the line tells us useful information. Remember that we are 
trying to estimate a line in order to persuade (ourselves or someone else) that there is a useful relationship 
here. And "useful" depends crucially upon the context. Sometimes a variable will have a small but vital 
relationship; others may have a large but much less useful relation.  

This first question, does the line persuade, is always contingent upon the problem at hand; there is no 
easy answer. You can only learn this by reading other people's analyses and by practicing on your own. It is an 
art form to be learned, but the second part is science. 

The economist Dierdre McCloskey has a simple phrase, "How big is big?"  This is influenced by the 
purpose of the research and the aim of discovering a relation: if we want to control some outcome or want to 
predict the value of some unknown variable or merely to understand a relationship. 

The second question, about the usefulness and persuasiveness of the line, also depends on the relative 
sizes of the modeled part of Y and the error. Returning to the notation introduced, this means the relative 

sizes of the predictable part of Y, 0 1Xβ β+ , versus the size of ε . As epsilon gets larger relative to the 
predictable part, the usefulness of the model declines. 

The second question, about how to tell how well a line describes data, can be answered directly with 
statistics, and it can be answered for quite general cases. 

How can we try to guard against seeing relationships where, in fact, none actually exist? 

To answer this question we must think like statisticians, do mental handstands, look at the world 
upside-down. 

Remember, the first step in "thinking like a statistician" is to ask, What if there were actually no 

relationship; zero relationship (so 1 0β = )?  What would we see? 

If there were no relationship then Y would be determined just by random error, unrelated to X. But 
this does not automatically mean that we would estimate a zero slope for the fitted line. In fact we are highly 
unlikely to ever estimate a slope of exactly zero. We usually assume that the errors are symmetric, i.e. if the 
actual value of Y is sometimes above and sometimes below the modeled value, without some oddball skew 
up or down. So even in a case where there is actually a zero relationship between Y and X, we might see a 
positive or negative slope.  



We would hope that these errors in the estimated slope would be small – but, again, "how small is 
small?"  

Let's take another example. Suppose that the true model is Y = 10 + 2X (so 0 10β =  and 1 2β = ). But of 
course there will be an error; let's consider a case where the error is pretty large. In this case we might see a 
set of points like this: 

 

When we estimate the slope for those dots, we would find not 2 but, in this case (for this particular set 
of errors), 1.61813. 

Now we consider a rather strange thing: suppose that there were actually zero relationship between X 

and Y (so that actually 1 0β = ). Next suppose that, even though there were actually zero relation, we tried to 

plot a line and so calculated our estimate of 1β . To give an example, we would have the computer calculate 
some random numbers for X and Y values, then estimate the slope, and we would find 1.45097. Do it again, 
and we might get 0.36131. Do it 10,000 times (not so crazy, actually – the computer does it in a couple of 
seconds), and we'd find the following range of values for the estimated slope: 



 

So our estimated slope from the first time, 1.61813, is "pretty far" from zero. How far?  The estimated 
slope is farther than just 659 of those 10,000 tries, which is 6.59%. 

So we could say that, if there were actually no relationship between X and Y, but we incorrectly 
estimated a slope, then we'd get something from the range of values shown above. Since we estimated a 
value of 1.61813, which is farther from zero than just 6.59% if there were actually no relationship, we might 
say that "there is just a 6.59% chance that X and Y could truly be unrelated but I'd estimate a value of 
1.61813." 

Now this is a more reasonable measure: "What is the chance that I would see the value, that I've 
actually got, if there truly were no relationship?"  And this percentage chance is relevant and interesting to 
think about. 

This formalization is "hypothesis testing". We have a hypothesis, for example "there is zero relation 
between X and Y," which we want to test. And we'd like to set down rules for making decisions so that 
reasonable people can accept a level of evidence as proving that they were wrong. (An example of not 
accepting evidence: the tobacco companies remain highly skeptical of evidence that there is a relationship 
between smoking and lung cancer. Despite what most researchers would view as mountains of evidence, the 
tobacco companies insist that there is some chance that it is all just random. They're right, there is "some 
chance" – but that chance is, by now, probably something less than 1 in a billion.)  Most empirical research 
uses a value of 5% -- we want to be skeptical enough that there is only a 5% chance that there might really be 
no relation but we'd see what we saw. So if we went out into the world and did regressions on randomly 
chosen data, then in 5 out of 100 cases we would think that we had found an actual relation. It's pretty low but 
we still have to keep in mind that we are fallible, that we will go wrong 5 out of 100 (or 1 in 20) times. 

Under some general conditions, the OLS slope coefficient will have a normal distribution -- not a 
standard normal, though, it doesn't have a mean of zero and a standard deviation of one. 

However we can estimate its standard error and then can figure out how likely it is, that the true mean 
could be zero, but I would still observe that value. 



This just takes the observed slope value, call it 1̂β  (we often put "hats" over the variables to denote 
that this is the actual observed value), subtract the hypothesized mean of zer0, and divide by the standard 
error: 

 
( ) ( )

1 1

1 1

ˆ ˆ0
se se
β β

β β
−

=  

We call this the "t-statistic". When we have a lot of observations, the t-statistic has approximately a 
standard normal distribution with zero mean and standard deviation of one.  

For the careful students, note that the t-statistic actually has a t-distribution, which has a shape that 
depends on the number of observations used to construct it (the degrees of freedom). When the number of 
degrees of freedom is more than 30 (which is almost all of the time), the t-distribution is just about the same 
as a normal distribution. But for smaller values the t-distribution has fatter tails. 

The t-statistic allows us to calculate the probability that, if there were actually a zero relationship, I 

might actually observe a value as extreme as 1̂β . By convention we look at distance either above or below 

zero, so we want to know the probability of seeing a value as far from zero as either 1̂β  or 1̂β− . If 1̂β  were 
equal to 1, then this would be: 

 

while if 1̂β  were another value, it would be: 



 

From working on the probabilities under the standard normal, you can calculate these areas for any 

given value of 1̂β . 

In fact, these probabilities are so often needed, that most computer programs calculate them 
automatically – they're called "p-values". The p-value gives the probability that the true coefficient could be 
zero but I would still see a number as extreme as the value actually observed. By convention we refer to 
slopes with a p-value of 0.05 or less (less than 5%) as "statistically significant". 

(We can test if coefficients are different from other values than just zero, but for now that is the most common so we focus on 
it.) 

Confidence Intervals for Regression Estimates 

There is another way of looking at statistical significance. We just reviewed the procedure of taking 
the observed value, subtracting off the mean, dividing by the standard error, and then comparing the 
calculated t-statistic against a standard normal distribution. 

But we could do it backwards, too. We know that the standard normal distribution has some 
important values in it, for example the values that are so extreme, that there is just a 5% chance that we could 
observe what we saw, yet the true value were actually zero. This 5% critical value is just below 2, at 1.96. So if 
we find a t-statistic that is bigger than 1.96 (in absolute value) then the slope would be "statistically 
significant"; if we find a t-statistic that is smaller than 1.96 (in absolute value) then the slope would not be 
"statistically significant". We can re-write these statements into values of the slope itself instead of the t-
statistic. 

We know from above that 

( ) ( )
1 1

1 1

ˆ ˆ0 t
se se
β β

β β
−

= = , 

and we've just stated that the slope is not statistically significant if: 



1.96t < . 

This latter statement is equivalent to: 

1.96 1.96t− < <  

Which we can re-write as: 

( )
1

1

ˆ
1.96 1.96

ˆse
β
β

− < <  

Which is equivalent to: 

( )( ) ( )( )1 1 1
ˆ ˆ ˆ1.96 1.96se seβ β β− < <  

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of zero, then 
the slope is not statistically significant; if we observe a slope farther from zero than 1.96 standard errors, then 
the slope is statistically significant. 

This is called a "95% Confidence Interval" because this shows the range within which the observed 
values would fall, 95% of the time, if the true value were zero. Different confidence intervals can be calculated 
with different critical values: a 90% Confidence Interval would need the critical value from the standard 
normal, so that 90% of the probability is within it (this is 1.64). 

Details: 

- statistical significance for a univariate regression is the same as overall regression 
significance – if the slope coefficient estimate is statistically significantly different from zero, then this 
is equivalent to the statement that the overall regression explains a statistically significant part of the 
data variation. 

- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

- There are important assumptions about the regression that must hold, if we are to 
interpret the estimated coefficients as anything other than within-sample descriptors: 

o X completely specifies the causal factors of Y (nothing omitted) 
o X causes Y in a linear manner 
o errors are normally distributed (for small sample test stats) 
o errors have same variance even at different X (homoskedastic not 

heteroskedastic) 
o errors are independent of each other 

- Because OLS squares the residuals, a few oddball observations can have a large impact 
on the estimated coefficients, so must explore 

 Points: 



Calculating the OLS Coefficients 

The formulas for the OLS coefficients have several different ways of being written. For just one X-
variable we can use summation notation (although it's a bit tedious). For more variables the notation gets 
simpler by using matrix algebra. 

The basic problem is to find estimates of β0 and β1 to minimize the error in 0 1i i iy X eβ β= + + . 

The OLS coefficients are found from minimizing the sum of squared errors, where each error is 

defined as 0 1i i ie y Xβ β= − −  so we want to ( )
0 1 0 1

22
0 1, ,1 1

min min
n n

i i i
i i

e y X
β β β β

β β
= =

= − −∑ ∑ . If you know basic calculus 

then you understand that you find the minimum point by taking the derivative with respect to the control 
variables, so differentiate with respect to β0 and β1. After some tedious algebra, find that the minimum value 

occurs when we use 0β̂  and 1̂β , where: 
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 0 1
ˆ ˆY Xβ β= − . 

With some linear algebra, we define the equations as y X eβ= + , where y is a column vector, 
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. The OLS coefficients are 

then given as ( ) 1ˆ X X X yβ −′ ′= . 

But the computer does the calculations so you only need these if you go on to become an 
econometrician. 

To Recap: 

• A zero slope for the line is saying that there is no relationship. 

• A line has a simple equation, that Y = β0 + β1X  

• How can we "best" find a value of β? 

• We know that the line will not always fit every point, so we need to be a bit more careful 
and write that our observed Y values, Yi (i=1, …, N), are related to the X values, Xi, as: Yi = β0 + β1Xi + ui. 
The ui term is an error – it represents everything that we haven't yet taken into consideration. 



• Suppose that we chose values for β0 and β1 that minimized the squared values of the 

errors. This would mean ( )
0 1 0 1

22
0 1, ,1 1

min min
N N

i i i
i i

u Y X
β β β β

β β
= =

= − −∑ ∑ . This will generally give us unique values 

of β (as opposed to the eyeball method, where different people can give different answers). 

• The β0 term is the intercept and the β1 term is the slope, dY
dX

. 

• These values of β are the Ordinary Least Squares (OLS) estimates. If the Greek letters 

denote the true (but unknown) parameters that we're trying to estimate, then denote 0β̂  and 1̂β  as 

our estimators that are based on the particular data. We denote îY  as the predicted value of what we 

would guess Yi would be, given our estimates of β0 and β1, so that 0 1
ˆ ˆ

î iY Xβ β= + .  

• There are formulas that help people calculate 0β̂  and 1̂β  (rather than just guessing 
numbers); these are: 
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Why OLS?  It has a variety of desirable properties, if the data being analyzed satisfy some very basic 
assumptions. Largely because of this (and also because it is quite easy to calculate) it is widely used in many 
different fields. (The method of least squares was first developed for astronomy.) 

• OLS requires some basic assumptions: 

o The conditional distribution of ui given Xi has a mean of zero. This is a 
complicated way of saying something very basic: I have no additional information outside of 
the model, which would allow me to make better guesses. It can also be expressed as implying 
a zero correlation between Xi and ui. We will work up to other methods that incorporate 
additional information. But this is why economists look for "natural experiments" where some 
X is determined by chance outside the ordinary interrelationships. 

o The X and e are i.i.d. This is often not precisely true; on the other hand it might 
be roughly right, and it gives us a place to start. 

o Xi and ui have fourth moments. This is technical and broadly true, whenever the 
X and Y data have a limit on the amount of variation, although there might be particular 
circumstances where it is questionable (sometimes in finance). 

• These assumptions are costly; what do they buy us?  First, if true then the OLS 
estimates are distributed normally in large samples. Second, it tells us when to be careful. 



• Must distinguish between dependent and independent variables (no simultaneity). 

• If these are true then the OLS are unbiased and consistent. So 0 0
ˆE β β  =   and 

1 1
ˆE β β  =  . The normal distribution, as the sample gets large, allows us to make hypothesis tests 

about the values of the betas. In particular, if you look back to the "eyeball" data at the beginning, you 
will recall that a zero value for the slope, β1, is important. It implies no relationship between the 
variables. So we will commonly test the estimated values of β against a null hypothesis that they are 
zero. 

• There are formulas that you can use, for calculating the standard errors of the β 
estimates, however for now there's no need for you to worry about them. The computer will calculate 
them. (Also note that the textbook uses a more complicated formula than other texts, which covers 
more general cases. We'll talk about that later.) 

 

Regression in R 

To have R do a linear regression, we use the command "lm()" as for example  
model1 <- lm(Y ~ X1) 
summary(model1) 

This estimates a linear model of 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝜀𝜀 and reports estimates of the intercept and slope 
coefficients. 

Regression Details 

We'll often form hypotheses about regression coefficients: t-stats, p-values, and confidence intervals – 
so that's the same basic process as before. Usually two-sided (rarely one-sided). 

We will commonly test if the coefficients 'are significant' – i.e. is there evidence in the data that the 
coefficient is different from zero?  This goes back to our original example where we looked at the difference 
between the Hong Kong/Singapore stock returns and the US stock returns/interest rate. A zero slope is 
evidence against any relationship – this shows that the best guess of the value of Y does not depend on 
current information about the level of X. So coefficient estimates that are statistically indistinguishable from 
zero are not evidence that the particular X variable is useful in prediction. 

A hypothesis test of some statistical estimate uses this estimator (call it X̂ ) and the estimator's 

standard error (denote it as X̂se ) to test against some null hypothesis value, nullX . To make the hypothesis 

test, form 
ˆ

ˆ
null

X

X XZ
se
−

= , and – here is the magic! – under certain conditions this Z will have a Standard 

Normal distribution (or sometimes, if there are few degrees of freedom, a t-distribution; later in more 
advanced stats courses, some other distribution). The magic happens because if Z has a Standard Normal 

distribution then this allows me to measure if the estimate of X, X̂ , is very far away from nullX . It's generally 
tough to specify a common unit that allows me to say sensible things about "how big is big?" without some 
statistical measure. The p-value of the null hypothesis tells me, "If the null hypothesis were actually true, how 
likely is it that I would see this X̂  value?"  A low p-value tells me that it's very unlikely that my hypothesis 
could be true and yet I'd see the observed values, which is evidence against the null hypothesis. 



Often the formula, 
ˆ

ˆ
null

X

X XZ
se
−

= , gets simpler when nullX  is zero, since it is just 
ˆ ˆ

ˆ ˆ0

X X

X XZ
se se
−′ = = , 

and this is what R prints out in the regression output labeled as "t".  

We know that the standard normal distribution has some important values in it, for example the 
values that are so extreme, that there is just a 5% chance that we could observe what we saw, yet the true 
value were actually zero. This 5% critical value is just below 2, at 1.96. So if we find a t-statistic that is bigger 
than 1.96 (in absolute value) then the slope would be "statistically significant"; if we find a t-statistic that is 
smaller than 1.96 (in absolute value) then the slope would not be "statistically significant". We can re-write 
these statements into values of the slope itself instead of the t-statistic. 

We know from above that 

( ) ( )
1 1

1 1

ˆ ˆ0 t
se se
β β

β β
−

= = , 

and we've just stated that the slope is not statistically significant if: 

1.96t < . 

This latter statement is equivalent to: 

1.96 1.96t− < <  

Which we can re-write as: 

( )
1

1

ˆ
1.96 1.96

ˆse
β
β

− < <  

Which is equivalent to: 

( )( ) ( )( )1 1 1
ˆ ˆ ˆ1.96 1.96se seβ β β− < <  

So this gives us a "Confidence Interval" – if we observe a slope within 1.96 standard errors of zero, then 
the slope is not statistically significant; if we observe a slope farther from zero than 1.96 standard errors, then 
the slope is statistically significant. 

This is called a "95% Confidence Interval" because this shows the range within which the observed 
values would fall, 95% of the time, if the true value were zero. Different confidence intervals can be calculated 
with different critical values: a 90% Confidence Interval would need the critical value from the standard 
normal, so that 90% of the probability is within it (this is 1.64). 

OLS is nothing particularly special. The Gauss-Markov Theorem tells us that OLS is BLUE: Best Linear 
Unbiased Estimator (and need to assume homoskedasticity). Sounds good, right?  Among the linear unbiased 
estimators, OLS is "best" (defined as minimizing the squared error). But this is like being the best-looking 
economist – best within a very small and very particular group is not worth much!  Nonlinear estimators may 
be good in various situations, or we might even consider biased estimators. 



If X is a binary dummy variable 

Sometimes the variable X is a binary variable, a dummy, Di, equal to either one or zero (for example, 

female). So the model is 0 1i i iY D uβ β= + +  can be expressed as 0 1

0

1
0

i i
i

i i

u if D
Y

u if D
β β
β
+ + =

=  + =
. So this is just 

saying that Y has mean β0 + β1 in some cases and mean β0 in other cases. So β1 is interpreted as the difference 
in mean between the two groups (those with D=1 and those with D=0). Since it is the difference, it doesn't 
matter which group is specified as 1 and which is 0 – this just allows measurement of the difference between 
them. 

Other 'tricks' of time trends (& functional form) 

• If the X-variable is just a linear change [for example, (1,2,3,...25) or (1985, 
1986,1987,...2010)] then regressing a Y variable on this is equivalent to taking out a linear trend: the 
errors are the deviations from this trend. Either the X-variable of (1,2,3,…) or (1985,1986,1987,…) gives 
the same since the slope coefficient estimates dY/dX and in either case dX=1. There is a difference in 
the intercept term only. 

• If the Y-variable is a log function then the regression is interpreted as explaining 
percent deviations (since derivative of lnY = dY/Y, the percent change). (So what would a linear trend 
on a logarithmic form look like?) 

• If both Y and X are logs then can interpret the coefficient as the elasticity. 

• examine errors to check functional form – e.g. height as a function of age works well for 
age < 12 but then breaks down 

• plots of X vs. both Y and predicted-Y are useful, as are plots of X vs. error. 

In addition to the standard errors of the slope and intercept estimators, the regression line itself has a 
standard error.  

A commonly overall assessment of the quality of the regression is the R2 (displayed by many statistical 
programs). This is the fraction of the variance in Y that is explained by the model so 0 ≤ R2 ≤ 1. Bigger is 
usually better, although different models have different expectations (i.e. it's graded on a curve). 

Statistical significance for a univariate regression is the same as overall regression significance – if the 
slope coefficient estimate is statistically significantly different from zero, then this is equivalent to the 
statement that the overall regression explains a statistically significant part of the data variation. 

- Excel calculates OLS both as regression (from Data Analysis TookPak), as just the slope 
and intercept coefficients (formula values), and from within a chart 

Multiple Regression – more than one X variable 

Regressing just one variable on another can be helpful and useful (and provides a great graphical 
intuition) but it doesn't get us very far. 

We often know that there are lots of other variables that have influence. How can we keep track of all 
of these different effects? 



Multiple Regression in R 

From the standpoint of just using R, there is little difference for the user between a univariate and 
multivariate linear regression. Again use "lm()" but then add a bunch of variables to the model specification, 
so "Y ~ X1 + X2 + X3". 

In formulas, model has k explanatory variables for each of ( )1,2,i n=   observations (must have n > k) 

0 1 1, 2 2, ,i i i k k i iy x x xβ β β β ε= + + + + +  

Each coefficient estimate, notated as ˆ
jβ , has standardized distribution as t with (n – k) degrees of 

freedom. 

Each coefficient represents the amount by which the y would be expected to change, for a small 

change in the particular x-variable (i.e. j
j

y
x

β ∂
=
∂

). 

Note that you must be a bit careful specifying the variables. Educational attainment might be coded 
with a bunch of numbers from 31 to 46 but these numbers have no inherent meaning. If a person graduates 
high school then their grade coding changes from 38 to 39 but this must be coded with a dummy variable. If a 
person moves from New York to North Dakota then this increases their state code from 36 to 38; this is not 
the same change as would occur for someone moving from North Dakota to Oklahoma (40) nor is it half of 
the change as would occur for someone moving from New York to North Carolina (37). Each state needs a 
dummy variable. These X-variables are not continuous. 

A multivariate regression can control for all of the different changes to focus on each item individually. 

 

Example 

 BMI as function of Age, Sleep, Education 

 model_OLS <- lm(X_BMI5 ~ SLEPTIM1 + EDUCA + X_AGEG5YR, data = 
brfss22) 

 summary(model_OLS) 
                                                                      
<more details in lecture video>  

 

 

Take the output a piece at a time. First it confirms what model you had called (useful when you go 
back later, after you've run lots of regressions). Next it gives a summary of the residuals, 

𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦� = 𝑦𝑦𝑖𝑖 − �𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2�𝑥𝑥2,𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘�𝑥𝑥𝑘𝑘,𝑖𝑖� 

These can be called at any point with "residuals(model3)" so the output is simply from 
"summary(residuals(model3))". The mean is not reported here since the model constrains the mean 



of the residuals to zero. The fitted values, 𝑦𝑦� = 𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2�𝑥𝑥2,𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘�𝑥𝑥𝑘𝑘,𝑖𝑖, can be called as 
fitted.values(model3). You can plot these. 

Then R reports the coefficients, standard errors, t-statistics, and p-values for each term in the model. 
The coefficients and standard errors are calculated by the estimation routine. The t-statistic is the ratio of the 

coefficient estimate divided by the standard error, 
( )
ˆ
ˆ

t
se
β
β

= . The p-value is the area in the tails of a t-

distribution (with degrees of freedom as shown on bottom line) beyond the t-statistic. The command, 
"coefficients(model3)", accesses the coefficient values. 

At the bottom of the R summary it shows the R-squared, the standard error of the residual (which is 
basically the same as sd(residuals(model3))), and the F-statistic, which is another measure of how 
well the model fits. 

You should be able to calculate the t-statistic and p-value from the coefficient estimates and standard 
errors by yourself (the next homework will give you some chances to practice that). 

You should also be able to calculate confidence intervals, although R can do that for you as well, with 
for example, confint(model3,level = 0.95). 

R will also produce lots of plots, simply with plot(model3), which gives lots of plots in sequence – 
you can pick off particular ones with plot(model3, which = 3) that will give the 3rd plot. (The plots 
indicate that this might not be a great model.) 

You can get an Analysis of Variance (ANOVA) with anova(model3). For now don't worry about the 
details of the output except to the final row of figures, labeled "Residuals". This gives one of the most 
important bits of information about the model: how big are the residuals?  Remember that's the whole point 
of the OLS estimator – it minimizes the (squared) residuals. So this gives you the value of the sum of squared 
residuals. 

There is a final detail, that we use interval = "confidence" if the x-values to be predicted are 
inside the values estimated, and interval = "prediction" if the x-values are outside. 
  



Statistical Significance  

Statistical significance of coefficient estimates is the same when we look at individual coefficients but 
more complicated for multiple coefficients: we can ask whether a group of variables are jointly significant, 
which takes a more complicated test. We can even ask if all of the slope coefficients together are statistically 
significant. 

For a univariate regression, if the single slope coefficient is statistically significant then the overall 
regression is as well (the F statistic is the square of the t-stat in that case). 

The difference between the overall regression fit and the significance of any particular estimate is that 
a hypothesis test of one particular coefficient tests if that parameter is zero; is βi = 0?  This uses the t-statistic 

( )
ˆ
ˆ

t
se
β
β

= and compares it to a t distribution. The test of the regression significance tests if ALL of the slope 

coefficients are simultaneously zero; if β1 = β2 = β3 = ... = βK = 0. The latter is much more restrictive. (See 
Chapter 7 of Stock & Watson.) 

It is often sensible to make joint tests of regression coefficients, for example with a group of dummy 
variables. If we have a set of dummies for education levels, it is strange to think of omitting just one or two; it 
is more reasonable to ask whether education measures (overall) are statistically significant. We might also 
want to know if individual coefficients are equal to each other (e.g. to ask if going to college, without getting 
any degree, is really different from the estimate for just a high school diploma. 

To do this in R, there is a package, linearHypothesis (part of the package, car, Companion to 
Applied Regression, which is auto-loaded by AER package). But the commands shouldn't obscure the simple 
basic point: we evaluate variables based on how well they fit in the model. 

To consider the question of whether a set of variables is statistically significant, we basically are just 
looking at how big is the error (the Sum of Squared Errors) with and without those variables. In general 
adding more variables to the model can never make the errors bigger (can never increase the Sum of Squared 
Errors) – basically this is a statement that the Marginal Benefit of more variables can never be negative. But 
profit maximization requires that we balance Marginal Benefit against Marginal Cost – what is the marginal 
cost of adding more variables?  Statistical significance is one measure of profitability in this sense. 

If adding new predictors makes the error "a lot" smaller, then those predictors are jointly statistically 
significant. The essence of statistical testing is just finding a good metric for "a lot". 

Note that we can only properly make comparisons within models – it doesn't make much sense to 
look across models. If I have a model of the fraction of income spent on food, and another model of the level 
of income, it is difficulty to sensibly pose a question like, "in which model is education more important?"  It 
would be like asking who scored more points per game, Shaq or Jeter? – you can ask the question but it's 
difficult to interpret in a sensible way.  

But within a model we can make comparisons and many of them come down to asking, how much 
smaller are the errors? (Did the Sum of Squared Errors fall by a lot?)  Sometimes it is easiest to just estimate 
the model twice, with or without the variables of interest, and look at how much the Sum of Squared Errors 
(from ANOVA in R) fell. But once you get some experience, you'll appreciate linearHypothesis.  

 
Finally note that "statistically significant" is different from "important". Suppose you have some Y-

values ranging from 100 – 1000, but you notice that a particular X value is associated with the first decimal 



value. When X has one value, the first decimal is .2; when X has another value the first decimal is 0.7. There 
are a lot of reasons that could be the case. This could be an interesting pattern and this could tell us subtle 
things about the world. But a 0.5 difference, among values ranging over 3 digits, is really tiny!  A hypothesis of 
statistical significance could duly tell you that the X-value is significant (it is a good indicator of whether the 
outcome is yyy.2 or yyy.7). But depending on the question you're asking, that could be unimportant. 

Why do we always leave out a dummy variable?  Multicollinearity.  

• OLS basic assumptions: 

o The conditional distribution of ui given Xi has a mean of zero. This is a 
complicated way of saying something very basic: I have no additional information outside of 
the model, which would allow me to make better guesses. It can also be expressed as implying 
a zero correlation between Xi and ui. We will work up to other methods that incorporate 
additional information. 

o The X and errors are i.i.d. This is often not precisely true; on the other hand it 
might be roughly right, and it gives us a place to start. 

o X and errors don't have values that are "too extreme."  This is technical (about 
existence of fourth moments) and broadly true, whenever the X and Y data have a limit on the 
amount of variation, although there might be particular circumstances where it is questionable 
(sometimes in finance). 

• So if these are true then the OLS are unbiased and consistent. So 0 0
ˆE β β  =   and 

1 1
ˆE β β  =  . The normal distribution, as the sample gets large, allows us to make hypothesis tests 

about the values of the betas. In particular, if you look back to the "eyeball" data at the beginning, you 
will recall that a zero value for the slope, β1, is important. It implies no relationship between the 
variables. So we will commonly test the estimated values of β against a null hypothesis that they are 
zero. 

Factors in R 

R has a shortcut for lots of dummy variables – some variables are labeled as factors. Try them in your 
regressions. 

But remember the math behind. A factor coding education might have levels for if the person has a 
highschool diploma, if they have some college, if they have a college degree. Those are actually a bundle of 
yes/no questions, coded in usual Boolean manner that 1 is yes and zero is no. 

 Is highest level of education… 
Education factor Highschool Some college College degree 

Highschool 1 0 0 
Some college 0 1 0 

College degree 0 0 1 

 

 



Testing if All the New Variable Coefficients are Zero  

You're wondering how to tell if all of these new variables are worthwhile. Simple: Hypothesis Testing!  
There are various formulas, some more complicated, but for the case of homoskedasticity the formula is 
relatively simple.  

Why any formula at all – why not look at the t-tests individually?  Because the individual t-tests are 
asking if each individual coefficient is zero, not if it is zero and others as well are also zero. That would be a 
stronger test. 

To assess any model, we look at how well in predicts and what it misses. To measure how much a 
group of variables contributes to the regression, we look at the residual values – how much is still 
unexplained, after the various models?  And since this is OLS, we look at the squared residuals. R outputs the 
Sum of Squares for the Residuals in the ANOVA. We compare the sum of squares from the two models and 
see how much it has gone down with the extra variables. A big decrease indicates that the new variables are 
doing good work. And how do we know, how big is "big"?  Compare it to some given distribution, in this case 
the F distribution. Basically we look at the percent change in the sum of squares, so something like: 

 0 1

1

SSR SSRF
SSR
−

≈  

with the wavy equals sign to show that we're not quite done. Note that model 0 is the original model 
and model 1 is the model with the additional regressors, which will have a smaller residual (so this F can never 
be negative).  

To get from approximately equal to an equals sign, we need to make it a bit like an elasticity – what is 
the percent change in the number of variables in the model?  Suppose that we have N observations and that 
the original model has K variables, to which we're considering adding Q more observations. Then the original 
model has (N – K – 1) degrees of freedom [that "1" is for the constant term] while the new model has (N – K – 
Q – 1) degrees of freedom, so the difference is Q. So the percent change in degrees of freedom is 

1
Q

N K Q− − −
. Then the full formula for the F test is 

 

0 1

1

1

SSR SSR
SSRF

Q
N K Q

 −
 
 =

 
 − − − 

. 

Which is, admittedly, fugly. But we know its distribution, it's F with (Q, N-K-Q-1) degrees of freedom – 
the F-distribution has 2 sets of degrees of freedom. Calculate that F, then use R to find pf(F, df1 =Q, df2 = (N-
K-Q-1)) (or Excel to calculate FDIST(F,Q,N-K-Q-1)), to find a p-value for the test. If the p-value is less than 5%, 
reject the null hypothesis. 

Usually you will have the computer spit out the results for you. In R, anova(model1, model2) or 
else linearHypothesis() as we did before. 

Factors Interacting  
aka moderators, intersectionality, etc… 



Nonlinear Regression  

(more properly, How to Jam Nonlinearities into a Linear Regression) 

• X, X2, X3, … Xr 

• ln(X), ln(Y), both ln(Y) & ln(X) 

• interactions of dummy/continuous 

• interactions of continuous variables 

There are many examples of, and reasons for, nonlinearity. In fact we can think that the most general 
case is nonlinearity and a linear functional form is just a convenient simplification which is sometimes useful. 
But sometimes the simplification has a high price. For example, my kids believed that age and height are 
closely related – which is true for their sample (i.e. mostly kids of a young age, for whom there is a tight 
relationship, plus 2 parents who are aged and tall). If my sample were all children then that might be a decent 
simplification; if my sample were adults then that's lousy. 

The usual justification for a linear regression is that, for any differentiable function, the Taylor 
Theorem delivers a linear function as being a close approximation – but this is only within a neighborhood. 
We need to work to get a good approximation.  

Nonlinear terms 

Why is our regression linear? This is mostly convenience, and we can easily add non-linear terms such 
as Age2, if we think that the typical age/wage profile is not linear. For example, ggplot showed this 
relationship between age and income for different educational levels: 

 



A first approximation might be to estimate those as being like a part of a parabola, 

 

Age 

Wage 

 

So the regression would be: 

 iiii AgeAgeWage εβββ ++++= 2
210  

(where the term "..." indicates "other stuff" that should be in the regression). 

As we remember from calculus, 

 1 2 2dWage Age
dAge

β β= + ⋅ ⋅  

so that the extra “boost” in wage from another birthday might fall as the person gets older, and even 

turn negative if the estimate of 2 0β <  (a bit of algebra can solve for the top of the hill by finding the Age that 

sets 0dWage
dAge

= ). 

We can add higher-order effects as well, maybe Age3 and Age4 terms, which can trace out some 
complicated wage/age profiles. However we need to be careful of "overfitting" – adding more explanatory 
variables will never lower the R2. 

Logarithms 

Similarly can specify X or Y as ln(X) and/or ln(Y).  

(You also need to figure out how to work with observations where Y=0 since ln(0) doesn't give good 
results. Dropping those observations might be OK or might not, it depends.) 

If Y is in logs and D is a dummy variable, then the coefficient on the dummy variable is just the percent 
change when D switches from zero to one. 

So the choice of whether to specify Y as levels or logs is equivalent to asking whether dummy 
variables are better specified as having a constant level effect (i.e. women make $10,000 less than men) or 
having a percent change effect (women make 25% less than men). As usual there may be no general answer 
that one or the other is always right. 



Dummies 

Recall our discussion of dummy variables, that take values of just 0 or 1, which we’ll represent as Di. 
Since, unlike the continuous variable Age, D takes just two values, it represents a shift of the constant term. 
So the regression, 

 iiii uDAgeWage +++= 310 βββ  

The equation could be also written as 

 0 1

0 3 1

0
1

i i
i

i i

Age u for D
Wage

Age u for D
β β

β β β
+ + =

=  + + + = . 

These show that people with D=0 have intercept of just β0, while those with D=1 have intercept equal 
to β0 + β3. Graphically, this is: 

β0+β3

β0

 

 

We need not assume that the β3 term is positive – if it were negative, it would just shift the line 
downward. We do however assume that the rate at which age increases wages is the same for both genders – 
the lines are parallel. 

Dummy Variables Interacting with Other Explanatory Variables 

The assumption about parallel lines with the same slopes can be modified by adding interaction 
terms: define a variable as the product of the dummy times age, so the regression is  

 iiiiii uAgeDDAgeWage ++++= 4310 ββββ
 

or 

 ( ) ( )0 3 1 4i i i i iWage D D Age uβ β β β= + + + +  

or 

 
( ) ( )
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Age u for D
Wage

Age u for D
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β β β β
+ + =

=  + + + + =  



so that, for those with D=0, as before 
Age

Wage
∆
∆

=β1 but for those with D=1, 1 4
Wage
Age

β β∆
= +

∆
. 

Graphically, 

β0+β3

β0

 

so now the intercepts and slopes are different. 

So we might wonder if men and women have a similar wage-age profile. We could fit a number of 
possible specifications that are variations of our basic model that wage depends on age and age-squared. The 
first possible variation is simply that: 

2
0 1 2 3i i i i iWage Age Age D uβ β β β= + + + + , 

which allows the wage profile lines to have different intercept-values but otherwise to be parallel (the 
same hump point where wages have their maximum value), as shown by this graph: 
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The next variation would be to allow the lines to have different slopes as well as different intercepts: 

2
0 1 2

2
3 4 5

i i i

i i i i i i

Wage Age Age

D D Age D Age u

β β β

β β β

= + +

+ + + +
 

which allows the two groups to have different-shaped wage-age profiles, as in this graph: 
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(The wage-age profiles might intersect or they might not – it depends on the sample data.) 

We can look at this alternately, that for those with D=0, 

2
0 1 2

1 22

wage Age Age
dWage Age
dAge

β β β

β β

= + +

= +
 

so the extreme value of Age (where 0dWage
dAge

= ) is 1

22
β
β
−

. 

While for those with D=1, 
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so the extreme value of Age (where 0dWage
dAge

= ) is ( )
( )

1 3

2 42
β β
β β

− +
+

. Or write the general value, for both 

cases, as ( )
( )

1 3

2 42
D
D

β β
β β

− +
+

 where D is 0 or 1. 

This specification, with a dummy variable multiplying each term: the constant and all the explanatory 
variables, is equivalent to running two separate regressions: one for men and one for women: 

1 2

1 2

2
0

2
0

0

1

male male male
i i i i

female female female
i i i i

D
Wage Age Age u

D
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β β β
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=
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=
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Where the new coefficients are related to the old by the identities: 
0 0 3
femaleβ β β= + , 1 1 4

femaleβ β β= + , 

and 2 2 5
femaleβ β β= + . Sometimes breaking up the regressions is easier, if there are large datasets and many 

interactions. 

Note that it would be very weird (and difficult to justify) to have an interaction of the dummy with the 
Age term but not with Age-squared or vice versa. Why would we want to assume that, say, men and women 
have different linear effects but the same squared effect? 

Interactions with R 
It is very easy to do interactions with R, maybe too easy so that you can forget what it all means.  
 
It can be difficult to unpack the meaning all of the interaction terms. The regression creates dummy variables 
for educational classifications, showing that people with progressively higher educational qualifications get 
more money. But women get less at each rung: the coefficients on female interacted with education are 
negative. So for instance a male with an associate's degree is predicted to make about $20,700 more than a 
male without even a high school diploma, but a woman with an associate's degree gets $8400 less than the 
man – so her net premium for the associate's degree is (20,700 – 8400) = 12,300. 
 
We can create a table showing the net values, like this (also setting Age = 30), 
 

 Intercept+(Age=30) HS Some Coll AS Bach Adv Deg 
male 24494 10570 20178 20737 44536 79607 
female 
difference 

-6494 -6501 -9045 -8391 -15904 -30213 

net 18001 4068 11133 12347 28632 49394 
 
So in equations this says that 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽5𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽6𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ
+ 𝛽𝛽7𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 

… + 𝛾𝛾1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾4𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ
+ 𝛾𝛾5𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝜀𝜀 

 
Then the predicted values are, say for a 30-year-old female with an associate's degree, 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� = 𝛽𝛽0 + 𝛽𝛽1(𝐴𝐴𝐴𝐴𝐴𝐴 = 30) + 𝛽𝛽2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) + 𝛽𝛽3(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛽𝛽4(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0)
+ 𝛽𝛽5(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛽𝛽6(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛽𝛽7(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 

… + 𝛾𝛾1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾3(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1)
∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛾𝛾4(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛾𝛾5(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) 

 
Which looks ferociously complicated but multiplying by zero drops many of the terms 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� = 𝛽𝛽0 + 𝛽𝛽1(𝐴𝐴𝐴𝐴𝐴𝐴 = 30) + 𝛽𝛽2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) + 𝛽𝛽3(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛽𝛽4(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0)
+ 𝛽𝛽5(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛽𝛽6(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛽𝛽7(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + ⋯ {𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} + 

… + 𝛾𝛾1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) + 𝛾𝛾3(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1)
∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1) + 𝛾𝛾4(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 0) + 𝛾𝛾5(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0) 

 
From staring at the wage penalties, you might also conclude that it looks somewhat multiplicative, that the wage penalty 
for females is around 35%-40% for all of the terms involving college. This might motivate a log specification (which is 
usually preferred in the literature, I'm just passing over it here in order not to overwhelm with ornamentation). 

 



You might next look at gender/marital status interactions, or education/race/ethnicity interactions – there is 
no reason you can't do interactions upon interactions. They get complicated but just write out the various 
interactions in long equation format to help remember what is what. Just don't be a monkey about 
interpreting and understanding all of the interactions. The limit on how many interactions comes since as you 
take finer and finer cuts, you're essentially looking at group means where the numbers in each group get 
smaller and smaller. So you can do state-level factors interacted with gender and education, and probably get 
a decent estimate of how the wages of women-with-associates-in-NY compares with wages of women-with-
associates-in-Cali, but worse estimate of women-with-associates-in-Wyoming or some other empty state 
where nobody lives. Multi-level models (later) try to deal with this problem. 
 

Binary Dependent Variable Models  

• Sometimes our dependent variable is continuous, like a measurement of a person's age; 
sometimes it is just a "yes" or "no" answer to a simple question. A "Yes/No" answer can be coded as just a 1 
(for Yes) or a 0 (a zero for "no"). These zero/one variables are called dummy variables or binary variables. 
Sometimes the dependent variable can have a range of discrete values ("How many children do you have?"  
"Which train do you take to work?") – in this case we have a discrete variable. The binary and continuous 
variables can be seen as opposite ends of a spectrum. 

• We want to explore models where our dependent variable takes on discrete values; we'll start 
with just binary variables. For example, we might want to ask what factors influence a person to go to college, 
to have health insurance, or to look for a job; to have a credit card or get a mortgage; what factors influence a 
firm to go bankrupt; etc. 

• Linear Models such as OLS have some problems. These imply predicted values of Y that are 
greater than one or less than zero. They also have advantages! You should be able to do both 
http://marcfbellemare.com/wordpress/8951  

• Interpret our prediction of Y as being the probability that the Y variable will take a value of one. 
(Note: remember which value codes to one and which to zero – there is no necessary reason, for example, for us to code Y=1 if a 
person has health insurance; we could just as easily define Y=1 if a person is uninsured. The mathematics doesn't change but the 
interpretation does!) 

• want to somehow "bend" the predicted Y-value so that the prediction of Y never goes above 1 
or below zero, something like: 

 

Y 
1 
 
 
 
0 

X 
 

• Probit Model 

http://marcfbellemare.com/wordpress/8951


o ( ) ( )0 1 1 2 2Pr 1Y X X Xβ β β= = Φ + +  where ( )Φ   is the cdf of the standard normal 

o Pr
X

∆
∆

 is not constant 

• Logit Model 

o ( ) ( )0 1 1 2 2Pr 1Y X F X Xβ β β= = + + , where ( ) 1
1 zF z

e−=
+

 

o Pr
X

∆
∆

 is not constant 

• differences (Excel sheet:compare_probit_logit.xls) 

Clearly the differences are rather small; it is rare that we might have a serious theoretical justification 
for one specification rather than the other. 

 

(Note that the logit function given above has standard error of 3
π

 so in the plots I scaled the probit by this factor). 
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• Measures of Fit 

o no single measure is adequate; many have been proposed 

o What probability should be used as "hit"?  If the model says there is a 90% chance of 
Y=1, and it truly is equal to one, then that is reasonable to count as a correct prediction. But many 
measures use 50% as the cutoff. Tradeoff of false positives versus false negatives – loss function might 
well be asymmetric.  

 actually = 1 actually = 0 
Predicted = 1 Hooray! sad 
Predicted = 0 sad (maybe sadder?) Hooray! 

 

Probit/Logit in R 

For a logit estimation, just 

regn_logit1 <- glm(Y ~ X1 + X2, family = binomial, data = data1) 

for a probit estimation 

regn_probit1 <- glm(Y ~ X1 + X2, family = binomial (link = 'probit'), data = 
data1) 

 

Then the estimation results from “summary()” should be familiar. The interpretation is also essentially unchanged: 
look at the individual t-statistics (formed by dividing coefficient estimates from standard errors) then get a p-value from 
that.  

In addition to looking at effects of particular X-variables, we are interested in looking at predictive accuracy – but note 
that this is likely to vary depending on your project so the results I'm going to show here are particular to this analysis. 
You would have to carefully take a look at your own model predictions. Also would want to check different sub-groups – 
is predictive accuracy substantially better or worse for particular groups? That might be a signal that the simple 
dummies are not adequately capturing the variation. 
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Also note that the code as given treats either miss (whether actually true and predict false, or actually false and predict 
true) as equally bad. In many applications this is not the case!  Depending on the purpose of the model, false negatives 
and false positives could have different costs.  

• Details of estimation 

• recall that OLS just gives a convenient formula for finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , kβ β β β  that minimize the sum 

( )( )
2

0 1 1 2 2
1

ˆ ˆ ˆ ˆ
n

i i i k ki
i

Y X X Xβ β β β
=

− + + + +∑  . If we didn't know the formulas we could just have a computer pick 

values until it found the ones that made that squared term the smallest. 

• similarly a probit or logit coefficient estimates are finding the values of 0 1 2
ˆ ˆ ˆ ˆ, , , , kβ β β β  that minimize 

( )( )
2

0 1 1 2 2
1

ˆ ˆ ˆ ˆ
n

i i i k ki
i

Y f X X Xβ β β β
=

− + + + +∑  , whether the ( )f   function is a normal c.d.f. or a logit c.d.f. 

• Maximum Likelihood (ML) is a more sophisticated way to find these coefficient estimates – better than just guessing 
randomly. 

• For example the likelihood of any particular value from a normal distribution is the p.d.f.,  

21
21

2

x

e
µ

σ

πσ

− −  
  . If we have 

2 independent observations, 1 2,X X  from a distribution that is known to be normally distributed with variance of 1 (to 

keep the math easy) then the joint likelihood is 
( ) ( )2 2

1 2
1 1
2 21 1

2 2
X X

e e
µ µ

π π

− − − −
⋅ . We want to find a value of µ that 

maximizes that function. This is an ugly function but we could note that any value of µ that maximizes the natural log of 

that function will also maximize the function itself (since ( )ln   is monotonic) so we take logs to get 

( ) ( )2 2
1 2

1 1 1 1ln
2 22 2

X Xµ µ
π π

 
⋅ − − − − 

 
. Take the derivative with respect to µ and set it equal to zero to get 

( ) ( )1 2 0X Xµ µ− + − =  so that ( )1 2

2
X X

µ
+

= . You should be able to see that starting with n  observations would 

get us 
1

1 n

i
i

X X
n

µ
=

= =∑  so the average is also the maximum-likelihood estimator. A maximum-likelihood estimator 

could be similarly derived in cases where we don't know the variance (interestingly, that ML estimator of the standard 
error divides by n not (n – 1) so it is biased but consistent). 

• Maximizing the likelihood of the probit model is one or two steps more complicated but not different conceptually. 
Having a likelihood function with a first and second derivative makes finding a maximum much easier than the random 
hunt. 

Properly Interpreting Coefficient Estimates: 

Since the slope, PrY
X X

∆ ∆
=

∆ ∆
, the change in probability per change in X-variable, is always changing, 

the simple coefficients of the linear model cannot be interpreted as the slope, as we did in the OLS model. 
(Just like when we added a squared term, the interpretation of the slope got more complicated.)   



Return to the picture to make this clearer: 
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The slope at X1 is rather low; the slope at X2 is much steeper. 

The effect of the coefficients now interacts with all of the other variables in the model: The biggest 
difference is toward the middle. 

Multi-Level Modeling 

After Fixed Effects, we can generalize to Multi-Level Modeling (much of my explanation is based on the excellent book, 

Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman & Jennifer Hill). From the wage regressions based on CPS 
data that we were using, we can consider adding information about the person's occupation (the data gives a 
rough grouping of people into about 20 occupations). You've probably done a version of this regression in 
your head, if you've ever read someone's job title and tried to figure out how much she makes. 

There are a few ways to use the occupation data. One way is to ignore it, to not use it – which is what 
we were doing when we left it out of the regression. Everyone started from the same value. Gelman & Hill call 
this the "pooling" estimator since it pools everyone together. Another way would be to put in fixed effects for 
each occupation, letting each vary as needed – every occupation has a different intercept term, starting from 
a different value. This is "no-pooling."  This puts no constraints at all on what the intercepts might be – some 
high, some low, some way far afield. A multilevel model imposes a model on how those intercepts vary: 
usually that they have a normal distribution with a central mean and variance. The math to define the 
estimator gets a bit more complicated, but we let the computer worry about that. But it's basically a weighted 
average of the "pooled" and "no-pooled" estimates, where the number of people reporting being in that 
particular group give the weights. So groups with a lot of members get nearly that "no-pooled" estimate, 
while a group with few members would be estimated to be like the larger group. 

So in this example, the pooling case has wages of person i in industry j explained as 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼 + 𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 +
𝑒𝑒𝑖𝑖,𝑗𝑗 (where the X includes all the rest of the variables, lumped together). The no-pooling case has 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼𝑗𝑗 +
𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗  so the intercept varies by industry, j. The multilevel case has 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼0 + 𝛼𝛼[𝑗𝑗] + 𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗 but 
𝛼𝛼[𝑗𝑗]~𝑁𝑁(0,𝜎𝜎𝛼𝛼). 

With just a single level (like Occupation) this doesn't seem like a big thing, but if we want to define a 
lot of levels (Occupation, Industry, State or even City) then this gets more important. Instead of estimating a 
separate parameter for each level, we can estimate just overall parameters – and levels with only a small 
number of observations will be partially pooled. 



Once we decide we want to do such a thing, the remaining question is, "how?"  With R it's easy, just 
lmer() instead of lm(). [ y ~ (1 + z | group) + x + z + x:z ] 
 
modelmm1 <- lmer(WSAL_VAL ~ as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 
summary(modelmm1) 
 
modelmm2 <- lmer(WSAL_VAL ~ Age + female + AfAm + Asian + Amindian + race_oth  
               + Hispanic + educ_hs + educ_smcoll + educ_as + educ_bach + educ_adv  
               + married + divwidsep + union_m + veteran + immigrant + immig2gen 
              + as.factor(A_DTOCC) + (1 | as.factor(A_DTOCC)), dat_use) 
summary(modelmm2) 

In these cases we can compute the Intra-Class Correlation (ICC) which is the ratio of the variance in the 
groups (𝜎𝜎𝛼𝛼) to the total variance, so 𝜎𝜎𝛼𝛼

𝜎𝜎𝛼𝛼+𝜎𝜎𝜖𝜖
. Kind of like R2, this goes from zero to one and is graded on a curve. 

It tells how important the within-group variation is, relative to the total variation.  

Of course the next step would be to expand these coefficient estimates to be for slope as well as 
intercept – something like 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝛼𝛼0 + 𝛼𝛼[𝑗𝑗] + �𝛽𝛽0 + 𝛽𝛽[𝑗𝑗]�𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗. Multilevel modeling is a growing trend 
within econometrics. 
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